首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
杨杰男  付乾  李俊  张亮  熊珂睿  廖强  朱恂 《化工进展》2020,39(10):3987-3994
微生物燃料电池是一种处理废水同时产生电能的新型装置,阳极作为微生物燃料电池的重要组件极大地影响电池性能。针对微生物燃料电池传统三维电极结构不合理导致电极内部物质传输受限,电池功率密度较低的问题,本文采用3D打印技术并碳化的方式构建了结构可控的微生物燃料电池阳极,通过热重分析得到合适的碳化条件,并通过进一步的电化学分析和电极微观形貌拍摄研究了电极内部孔道结构对微生物生长情况和电池性能的影响。实验结果表明:电极孔径尺寸为0.4mm时,电池具有最优性能,其最大功率密度达12.85W/m2,比采用碳布阳极的MFC提升10倍,较采用碳毡阳极的燃料电池高38%;具有可控孔道结构电极的传荷阻抗和传质阻抗是限制电极性能的主要因素,通过优化孔道尺寸和结构分布可降低其传荷及传质阻抗,可以进一步提升电池性能。  相似文献   

2.
污水微生物燃料电池的细菌催化剂驯化   总被引:1,自引:1,他引:0  
采用一种无腔室连续流结构作为微生物燃料电池的反应器,考察了驯化条件和阳极电极材料对无介体微生物燃料电池性能的影响。结果表明,培养液COD负荷、电极材料以及放电电流对微生物燃料电池的性能都有直接影响。在驯化的初始阶段培养液的COD负荷和电流不宜过大,否则会影响厌氧微生物代谢,导致其丧失电活性;以20%PTFE石墨膜作为阳极电极材料,其孔径大小与厌氧微生物个体大小更为匹配,同时也具有较高的孔隙率,表现出最好的阳极性能。  相似文献   

3.
霍庆城  黄仁亮  齐崴  苏荣欣  何志敏 《化工学报》2016,67(10):4406-4412
微生物燃料电池(MFC)是一种利用微生物将有机物中的化学能直接转化成电能的装置,通过改善阳极特性可以有效提高微生物燃料电池的产电性能。通过恒电流法电沉积制备了氧化石墨烯/聚3,4-乙烯二氧噻吩(GO/PEDOT)复合材料修饰碳毡(CF)阳极。通过循环伏安法和交流阻抗法考察了电极特性。将其应用到微生物燃料电池中,对其产电性能进行评价。结果表明,GO/PEDOT-CF电极具有较大的比表面积和优良的电化学性能;以GO/PEDOT-CF为阳极的微生物燃料电池,产电性能良好,其最大功率密度和最大电流密度达到1.138 W·m-2和4.714 A·m-2,分别是未修饰阳极的4.80倍和5.51倍。因此,GO/PEDOT复合材料是一种优良的阳极修饰材料,可有效提高MFC的产电性能。  相似文献   

4.
微生物燃料电池(MFC)是一种利用微生物将有机物中的化学能直接转化成电能的装置,通过改善阳极特性可以有效提高微生物燃料电池的产电性能。通过恒电流法电沉积制备了氧化石墨烯/聚3,4-乙烯二氧噻吩(GO/PEDOT)复合材料修饰碳毡(CF)阳极。通过循环伏安法和交流阻抗法考察了电极特性。将其应用到微生物燃料电池中,对其产电性能进行评价。结果表明,GO/PEDOT-CF电极具有较大的比表面积和优良的电化学性能;以GO/PEDOT-CF为阳极的微生物燃料电池,产电性能良好,其最大功率密度和最大电流密度达到1.138W·m?2和4.714 A·m?2,分别是未修饰阳极的4.80倍和5.51倍。因此,GO/PEDOT复合材料是一种优良的阳极修饰材料,可有效提高MFC的产电性能。  相似文献   

5.
微生物燃料电池(MFCs)的启动及产电性能直接影响其应用于对实际废水的处理。以屠宰厂废水为基质研究了循环伏安扫描对单室空气阴极微生物燃料电池启动和产电性能的影响。结果表明:经过24 h CV扫描的MFCs其启动时间比常规电阻(1000 Ω)直接启动的MFCs缩短了71.4%(从420 h缩短至120 h),MFCs最大功率密度提高了21.5%,达到37.8 W·m-3。通过电极生物量测定和生物膜表面形貌观察发现,经CV扫描的阳极生物量显著提高且生物膜的产电菌占优势是MFCs性能提高的主要原因。说明CV扫描不断促进产电菌在阳极表面的吸附,而且增加产电微生物的生长速度。这一技术为发展MFCs的快速启动和提升MFCs的产电性能提供了新思路。  相似文献   

6.
肖书彬  徐克  阮国岭 《工业水处理》2012,32(9):32-34,48
增大电极比表面积是提高电容去离子效率的方法之一。通过研究活性炭负载量对电极比表面积的影响,探讨了一种提升炭电极电容去离子性能的有效方法。实验结果表明,增加活性炭负载量可有效提升电极比表面积,电极电容最高可达0.56 F/cm2,表现出较好的电容去离子性能。持续增加活性物质虽对电极内电阻影响较小,但不能进一步提高电极吸附表面,比电容急剧下降。优化电极孔隙结构是提升活性炭电极电吸附性能的有效方法。  相似文献   

7.
微生物燃料电池(Microbial fuel cell,MFC)是一种非常有前途的环境友好型电化学装置,它可以利用电活性微生物从废水中提取能源,并降解废水中的有机物,是解决目前环境与能源危机的重要技术。然而,相对较低的产电效率限制了其大规模应用,主要体现在阳极缓慢的胞外电子传递速率(extracellular electron transfer,EET)和较少的产电微生物附着量。纳米纤维由于具有高的比表面积、良好的电化学性能和电导率,是改善阳极的重要材料。本文介绍了影响阳极材料性能的因素,系统总结了近年来国内外纳米纤维基阳极材料的种类与制备方法,针对纳米纤维基阳极材料在MFC领域的研究现状,重点解释了各种纳米纤维材料的优缺点。最后,对纳米纤维基电极材料以及MFC技术的发展方向进行了展望,以期为推动MFC的工程化应用提供理论参考。  相似文献   

8.
针对微生物燃料电池输出功率低的问题,以碳纤维刷为改性对象,采用原位化学聚合的方法在碳纤维表面生长聚吡咯薄膜,增强电极的生物相容性,有利于产电微生物在电极表面的附着和繁殖;进一步在碳纤维表面引入石墨烯,可提高电极的比表面积和导电性能。结果表明,在聚吡咯和石墨烯的协同作用下,微生物燃料电池的产电性能得到极大提升,最大输出电压和最大输出功率密度分别能达到0.62 V和900 m W/m~2,与未改性碳刷相比分别提高了近24%和133%。  相似文献   

9.
阳极作为微生物燃料电池的重要组成部分,其性能直接影响微生物燃料电池的产电效率。主要综述了聚苯胺、聚吡咯等导电聚合物及其复合物修饰微生物燃料电池阳极材料的最新研究进展,对修饰材料的特点与性能进行了分析,最后对导电聚合物修饰微生物燃料电池阳极进行了展望。  相似文献   

10.
分析了微生物燃料电池的研究现状和影响其产电性能的主要因素,以及阳极活化过电势影响电池产电性能的过程,综述了从改善阳极电流-电势关系角度提高微生物燃料电池产电性能的研究进展. 分析认为,改善阳极电流-电势关系的关键是增加交换电流密度和增强异相电子传递,具体方法包括选择最适的阳极材料、优化阳极表面物理化学性质、筛选高效产电菌. 未来可从优化阳极材料几何结构、筛选高电催化活性产电菌及深入研究产电菌胞外电子传递过程的限制因素,如纳米导线与胞外细胞色素的作用机理等方面加强研究,优化微生物燃料电池产电性能.  相似文献   

11.
碳纤维阳极构造对微生物燃料电池性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
潘彬  孙丹  刘伟凤  叶遥立  郭剑  成少安 《化工学报》2014,65(8):3250-3254
微生物燃料电池(MFCs)阳极性能受生物膜的影响,而生物膜则直接与阳极表面积有关。以不同长度和数量的碳纤维丝作为阳极,研究了阳极构造和表面积对MFC输出功率的影响。当阳极为单根长度为1 cm碳纤维丝时,MFC产生的最大功率密度最高,为10.50 W·m-2,随着碳纤维丝长度逐渐增加(2~14 cm),MFC产生的最大功率显著下降。以多根的长度为2 cm碳纤维丝构成阳极时,MFC的功率与根数(1~4 根)呈正比,当采用4根2 cm纤维丝时,MFC的最大功率密度为2.92 W·m-2,该数值为单根8 cm碳纤维丝的2.78倍。观察碳纤维丝长度方向上的生物膜的分布表明:受碳纤维欧姆电阻的影响,在碳纤维丝电流引出端附近的生物量明显大于碳纤维其他地方,这说明:增加纤维丝长度虽可提高阳极的表面积,但并不能提高阳极的产电性能。  相似文献   

12.
This investigation considers the use of activated carbon nanofiber nonwoven (ACNFN) as a novel anode for microbial fuel cells (MFCs). ACNFN has an ultra-thin, porous interconnected structure with high bioaccessible surface area. Reduced distances from the free surface to the interior maximize use of the available surface area and this, combined with high macroporosity ensures superior performance by decreasing transport limitations. ACNFN was fabricated by pyrolysis of electrospun polyacrylonitrile and subsequent steam activation. Extensive characterization, including surface morphology, material chemistry, surface area, mechanical strength and biofilm adhesion was performed to validate the use of the material as an MFC anode. Preliminary tests in a single chamber MFC showed current densities of 2715 A/m3 which is about 10% greater than the highest maximum obtained so far. Further, this was achieved with a conductivity of only a fifth of that of the corresponding material. The bio-electrochemical performance of ACNFN was also compared to that of commonly-used anodes, carbon cloth and granular activated carbon. Such anode architecture will greatly help mitigate low power density issues which are one of the main factors limiting widespread adoption of MFCs.  相似文献   

13.
Microbial fuel cells (MFCs) are an alternative electricity generating technology and efficient method for removing organic material from wastewater. Their low power densities, however, hinder practical applications. A primary limitation in these systems is the anode. The chemical makeup and surface area of the anode influences bacterial respiration rates and in turn, electricity generation. Some of the highest power densities have been reported using large surface area anodes, but due to variable chemical/physical factors (e.g., solution chemistry, architecture) among these studies, meaningful comparisons are difficult to make. In this work, we compare under identical conditions six micro/nano‐structured anodes in micro‐sized MFCs (47 μL). The six materials investigated include carbon nanotube (CNT), carbon nanofiber (CNF), gold/poly (ϵ‐caprolactone) microfiber (GPM), gold/poly(ϵ‐caprolactone) nanofiber (GPN), planar gold (PG), and conventional carbon paper (CP). The MFCs using three dimensional anode structures (CNT, CNF, GPM, and GPN) exhibited lower internal resistances than the macroscopic CP and two‐dimensional PG anodes. However, those novel anode materials suffered from major issues such as high activation loss and instability for long‐term operation, causing an enduring problem in creating widespread commercial MFC applications. The reported work provides an in‐depth understanding of the interplay between micro‐/nano‐structured anodes and active microbial biofilm, suggesting future directions of those novel anode materials for MFC technologies.  相似文献   

14.
Surface roughness, porosity and contact angles of different carbon paper materials (TORAY paper with PTFE from 0% to 60% of and SGL paper with 0% and 20% of PTFE) suitable as electrodes in microbial fuel cells were investigated. The changes of contact angle between dry and clean anode surfaces and the ones after exposure to wastewater were measured using different liquids (pure water and sodium acetate solutions). The results showed that bacterial attachment to the carbon papers caused a significant decrease in the contact angle, shifting the surface property from highly hydrophobic to slightly hydrophobic or even hydrophilic. The quantity of biofilm attached on the anode surface decreased with the increase in PTFE content. Positive correlation between dry biomass content and the amount of pores at the small scale (5–10 μm) was observed. The start up time of MFCs was shortened by using the carbon anodes without PTFE or with low PTFE content (<20 wt%), probably due to the easier biofilm attachment on the surface. On the contrary, the carbon anodes with high PTFE contents had longer start up time. After several cycles of MFC operation, the performances became similar (20–30 mV of differences) regardless of the carbon anode used.  相似文献   

15.
化学氧化改性微生物燃料电池阳极   总被引:5,自引:4,他引:1       下载免费PDF全文
浓HNO3和酸性K2Cr2O7都具有一定的氧化性,分别利用浓HNO3和酸性K2Cr2O7对阳极碳布进行氧化改性处理。通过红外光谱测试显示,碳布表面附着了羟基(-OH)和羧基(-COOH)。通过扫描电镜观察,碳布经过氧化改性后表面明显变粗糙。同时,循环伏安曲线(CV)和交流阻抗曲线(EIS)测试表明,经过改性后的碳布具有良好的电化学特性。分别以经过浓HNO3和酸性K2Cr2O7改性处理后的碳布作为微生物燃料电池(MFC)的阳极,获得的最大功率密度分别为291.11 mW·m-2和438.08 mW·m-2,比未经过改性处理的碳布阳极的功率密度分别提升了21%和82%。  相似文献   

16.
杨斯琦  刘中良  侯俊先  周宇 《化工学报》2015,66(Z1):202-208
利用超级电容器活性炭(S-AC)直接还原KMnO4制备出复合比例分别为1:3、1:1和3:1的MnO2/S-AC复合催化剂, 进而负载于泡沫镍上制得MnO2/S-AC泡沫镍空气阴极。通过X射线衍射(XRD)、扫描电镜(SEM)、能量散射X 射线谱(EDX)和比表面积(BET)及孔分布测试对所制复合催化剂表征可知, 随复合比例的增加, 在S-AC表面的MnO2由纳米薄片聚集成粒径为300~500 nm的颗粒, MnO2/S-AC的内部及外部表面积都有所减少。基于线性扫描伏安曲线、功率密度曲线和极化曲线分析微生物燃料电池(MFC)的阴极性能和产电性能。复合比例为1:3时, MFC最大功率密度达到321.2 mW·m-2, 比阴极负载S-AC时提高了约20%, 这与其较高的比表面积和MnO2良好的催化活性相关。MnO2/S-AC复合催化剂控制在一定的质量比时, 可以有效提高阴极性能及MFC的产电效果, 有助于空气阴极MFC的的放大和工程应用。  相似文献   

17.
杨倩  徐源  蒋阳月  陈英文  祝社民  沈树宝 《化工进展》2013,32(10):2423-2428
微生物燃料电池(microbial fuel cell,MFC),是一种同步废水处理与产能的新技术——以微生物为催化剂降解废水中的有机物,将其中的化学能转化为电能。本文介绍了微生物燃料电池阳极和阴极材料以及电极催化剂的最新研究进展,讨论了提高微生物燃料电池性能的方法,即通过使用纳米材料修饰电极来提高微生物及催化剂的吸附面积、结合不同材料的优点制作复合材料做催化剂来克服单一材料的不足之处,以期研究和开发出高性能的微生物燃料电池;指出微生物燃料电池的应用前景是将微生物燃料电池与其它技术相耦合来提前实现它的实际应用。  相似文献   

18.
Microbial fuel cells(MFCs)rely on microbial conversion of organic substrates to electricity.The optimal performance depends on the establishment of a microbial community rich in electrogenic bacteria.Usually this microbial community is established from inoculation of the MFC anode chamber with naturally occurring mixed inocula.In this study,the electrochemical performance of MFCs and microbial community evolution were evaluated for three inocula including domestic wastewater(DW),lake sediment(LS)and biogas sludge(BS)with varying substrate loading(L_(sub))and external resistance(R_(ext))on the MFC.The electrogenic bacterium Geobacter sulfurreducens was identified in all inocula and its abundance during MFC operation was positively linked to the MFC performance.The LS inoculated MFCs showed highest abundance(18% ± 1%)of G.sulfurreducens,maximum current density [I_(max)=(690 ± 30)m A·m~(-2)] and coulombic efficiency(CE = 29% ± 1%)with acetate as the substrate.Imaxand CE increased to(1780 ± 30)m A·m~(-2)and 58% ± 1%,respectively,after decreasing the R_(ext) from 1000 Ω to 200 Ω,which also correlated to a higher abundance of G.sulfurreducens(21% ± 0.7%)on the MFC anodic biofilm.The data obtained contribute to understanding the microbial community response to Lsub and R_(ext)for optimizing electricity generation in MFCs.  相似文献   

19.
Anode materials were used to construct microbial fuel cells(MFCs), and the characteristics of the anodes were important for successful applied performance of the MFCs. Via the cyclic voltammetry(CV) method, the experiments showed that 5 wt% multiwalled carbon nanotubes(MWNTs) were optimal for the PANI/MWNT film anodes prepared using 24 polymerization cycles. The maximum output voltage of the PANI/MWNT film anodes reached 967.7 mV with a power density of 286.63 mW·m~(-2). Stable output voltages of 860 mV, 850 mV, and870 mV were achieved when the anaerobic fluidized bed microbial fuel cell(AFBMFC) anodes consisted of carbon cloth with carbon black on one side, copper foam and carbon brushes, respectively. Pretreatment of the anodes before starting the AFBMFC by immersion in a stirred bacterial fluid significantly shortened the AFBMFC startup time. After the AFBMFC was continuously run, the anode surfaces generated active microbial catalytic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号