首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 159 毫秒
1.
为提高永磁直驱同步风力发电机组功率输出的稳定性和低电压穿越能力,提出了采用超导磁储能-超导故障限流系统来平滑风电机组的有功输出,改善故障穿越能力。当电网故障时,电阻型超导限流器限制故障电流对网侧变流器的冲击,提高网侧变流器的无功输出能力;当电网电压正常时,超导磁储能系统通过吸收和释放功率来平滑风电机组的有功输出,抑制功率波动;当电网电压跌落时,超导磁储能系统吸收直流母线上的多余功率,抑制直流母线电压上升;同时通过控制网侧变流器输出无功功率以支撑电网电压。仿真结果表明了该方法的有效性。  相似文献   

2.
基于超导储能的直驱风电系统功率平滑控制   总被引:1,自引:0,他引:1  
针对并网运行直驱风力发电系统输出有功功率的波动问题,对变换器直流环节并联超导储能系统的控制方式在计及风速模型的基础上做进一步的分析,并对超导储能系统斩波器提出双闭环加脉冲判断的控制策略,确保超导磁体线圈电流水平,使超导储能系统可以快速、准确地吞吐能量,保证直驱风力发电系统在最大限度捕获风能的同时,向电网输送较为平滑的有功功率。对增加超导储能系统的直驱风力发电系统的建模仿真结果,说明了该方法的正确性和有效性。  相似文献   

3.
应用超级电容提高风电系统低电压穿越能力   总被引:4,自引:0,他引:4  
针对使用背靠背全功率变流器的永磁直驱风电系统,提出应用由超级电容和双向DC/DC变换器组成的储能系统提高风电机组的低电压穿越能力.研究永磁直驱风电系统的结构和控制策略,以及基于超级电容的储能系统平衡系统功率的特点,建立永磁直驱风电系统和基于超级电容的储能系统的模型,并给出控制策略和主要仿真参数.仿真结果显示,储能系统在电网电压发生跌落时,迅速平衡了直流母线两侧的功率变化,使直流母线电压保持稳定,并将风电机组与电网故障相隔离,保证风电机组继续向电网传输能量,从而提高风电系统的低电压穿越能力.  相似文献   

4.
储能型直驱永磁同步风力发电控制系统   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高直驱永磁风力发电系统的性能,在直流侧增加新型钒氧化还原液流电池(VRB)储能装置。设计了相应的双向DC/DC变换器控制策略,在风速变化时,VRB能够通过快速充放电平抑系统发电机输出功率波动以及平衡电网需求功率;在电网电压跌落时,还可提高低电压穿越能力。对具有储能电池的风力发电系统建立了仿真模型,详细分析了系统在风速变化、电网需求功率变化以及电压跌落时的动态响应过程和运行特性,并给出了仿真验证。仿真结果表明,在直流侧加VRB储能装置,有效地提高了直驱风电系统并网运行性能和低电压穿越能力,系统动态响应速度快。  相似文献   

5.
永磁直驱风电机组低电压穿越时的有功和无功协调控制   总被引:5,自引:0,他引:5  
为提高基于全功率变流器并网的永磁直驱风电机组低电压穿越能力,在深入研究该风电机组运行特性和控制策略的基础上,分析了电网电压跌落过程中引起全功率变流器直流侧电压波动的原因,提出了一种采用机侧变流器控制直流电压稳定,网侧变流器实现最大功率跟踪和有功无功协调的新型控制策略。在低电压穿越过程中,该控制策略根据变流器直流侧电压的变化,通过机侧变流器调节风力发电机的电磁功率,使电网故障期间风电机组的功率波动由发电机转子承担,消除全功率变流器两端的功率不平衡,稳定直流侧电压。并根据电网电压幅值,通过网侧变流器实现对风电机组输出有功和无功的协调控制,抑制电网电压扰动。仿真结果表明本文所提控制策略在电网电压扰动时能有效抑制直流侧电压波动,使永磁直驱风电机组的低电压穿越能力得到显著提高,并能有效实现对电网电压的支持。  相似文献   

6.
储能型直驱永磁同步风力发电控制系统   总被引:5,自引:0,他引:5       下载免费PDF全文
为提高直驱永磁风力发电系统的性能,在直流侧增加新型钒氧化还原液流电池(VRB)储能装置.设计了相应的双向DC/DC变换器控制策略,在风速变化时,VRB能够通过快速充放电平抑系统发电机输出功率波动以及平衡电网需求功率;在电网电压跌落时,还可提高低电压穿越能力.对具有储能电池的风力发电系统建立了仿真模型,详细分析了系统在风速变化、电网需求功率变化以及电压跌落时的动态响应过程和运行特性,并给出了仿真验证.仿真结果表明,在直流侧加VRB储能装置,有效地提高了直驱风电系统并网运行性能和低电压穿越能力,系统动态响应速度快.  相似文献   

7.
电网故障时永磁直驱风电机组的低电压穿越控制策略   总被引:16,自引:8,他引:8  
为提高永磁直驱风电机组所并电网的运行稳定性,研究电网故障下永磁直驱风电机组的运行特性以及提高其低电压穿越运行能力,文中提出一种适用于采用双脉宽调制变换器并网的永磁直驱风电机组的低电压穿越运行控制方案。通过在电网故障时限制发电机的电磁功率来限制输入至直流侧电容和电网侧变换器的功率,通过在电网故障时采用考虑发电机功率信息的网侧变换器电流闭环控制来实现直流链电压稳定控制,从而有效实现发电系统的低电压穿越运行。系统仿真结果表明,所提出的控制方案无需增加硬件保护装置,在电网对称及非对称故障下均可有效实现永磁直驱风电机组的低电压穿越运行。  相似文献   

8.
分析了电网不对称故障下含飞轮储能单元的永磁直驱风电系统直流母线电压波动机理,在此基础上,研究了适用于该类型风电系统低电压穿越增强运行控制策略。所提控制策略在实现电网不对称故障下发电系统向电网提供暂态无功支持的同时,亦可提供3种可选的独立运行模式。所提控制方案突破传统控制模式下网侧变换器抑制直流链电压波动能力的局限,将比例积分谐振控制器(proportional integralresonant,PIR)引入飞轮电机电流闭环控制,利用飞轮储能单元吸收直流电容2倍工频脉动功率,从而有效实现故障过程中直流链电压的稳定无波动控制,进一步增强系统不对称故障穿越运行能力。通过仿真计算验证了所提控制策略的正确性和有效性。  相似文献   

9.
已有的平衡控制策略无法同时兼顾直流侧电压稳定和并网有功无2倍工频波动,为此提出一种适用于永磁直驱风机的改进低电压穿越协调控制策略。该策略基于功率平衡思想,电网电压不对称故障期间,利用机侧变流器追踪并网输出有功,确保直流侧两端的功率流动基本平衡;通过在直流侧增加前馈控制环节,在消除并网有功2倍工频波动分量的同时,可维持直流侧端电压稳定;通过修正网侧变流器的参考电流指令,可使网侧电流维持在额定值附近。基于Matlab/Simulink搭建了永磁直驱风电仿真系统,验证了其有效性。在电网单相、两相短路故障时,该策略均可在抑制直流侧电压和并网有功波动的同时,有效地限制网侧电流幅值,更好地支持系统低电压穿越。  相似文献   

10.
电网不对称故障下直驱风电机组低电压穿越技术   总被引:16,自引:1,他引:15  
分析了直驱风电变流器在电网不对称情况下的表现,提出一种适用于该情况的网侧变流器控制策略,并将其与直流侧Crowbar电路配合,实现电网不对称故障下的低电压穿越.直驱风电机组与电网间的功率交换完全通过变流器实现,电网不对称故障引起的有功功率波动在变流器上表现为直流侧电压大幅波动.控制策略以稳定输出有功功率为目标,基于同步旋转坐标系和正负序分解得出控制模型,并综合考虑电流安全限值、系统复杂程度等问题,给出额定功率附近运行时发生不对称故障的穿越方案.使用MATLAB建立仿真模型,给出不对称故障下的仿真结果,证明方案可行性.  相似文献   

11.
直驱风电系统变流器建模和跌落特性仿真   总被引:10,自引:2,他引:8  
为增强直驱型变速恒频风电系统的低电压穿越能力,采取了变流器直流侧增加卸荷负载以在故障时消耗掉直流侧多余的能量,使风电机组的正常运行基本不受电压跌落影响的应对措施。通过对发电机侧变流器、电网侧变流器和直流侧卸荷负载工作原理的详细分析,变流器采用背靠背双PWM结构,实现了变流器的整体建模。基于Matlab7.3/simulink6.5构建了变流器的仿真模型,对电网电压跌落时系统的跌落特性进行了变流器模型及其分析正确性的仿真验证,结果表明,采用直流侧卸荷负载可有效提高直驱系统的故障穿越能力,具有较快的动态响应速度。  相似文献   

12.
全功率变流器永磁直驱风电系统低电压穿越特性研究   总被引:28,自引:4,他引:24  
随着风电机组安装容量的不断上升,风电系统在电网故障情况下的运行变得尤为重要,电网导则要求风电机组在电网电压瞬间跌落一定范围内不脱网运行。针对使用背靠背全功率变流器的永磁直驱风电系统,提出一种在电网电压瞬间跌落情况下不脱网运行的方法。电网发生电压瞬间跌落时,网侧变流器运行在静止无功补偿(STATCOM)模式,依据电网电压跌落的深度决定发出无功电流的大小,通过快速提供无功电流来稳定电网电压,实现直驱型风电系统的低电压穿越功能。仿真和实验结果表明电网电压故障时使直驱风电系统运行在STATCOM模式可以有效提高低电压穿越能力。  相似文献   

13.
为提高永磁直驱型风力发电机组的高电压穿越能力,在研究电网电压骤升下风力发电机组运行特性基础上提出一种基于双模控制的永磁直驱型风力发电机组高电压穿越控制策略。以电网电压骤升幅度及直流母线电压的升高程度为依据,利用选择器进行网侧变流器控制模式的转换,从而使直驱型风力发电机组具备高电压穿越能力。基于PSCAD仿真平台的仿真结果及应用结果表明,该控制策略不仅可以保证直驱型风力发电机组在电网电压骤升期间不脱网连续运行,还可以有效提高风力发电机组的无功补偿能力,有利于电网的安全稳定运行。  相似文献   

14.
针对Boost升压型永磁直驱型风电系统,分析了其发电机侧和网侧变流器的控制策略.为增强其低电压穿越能力,提出了一种基于转子储能和网侧无功优先输出的控制策略.通过减小发电机的有功输出来降低直流侧过电压,通过控制网侧无功输出来提升电网电压.基于Matlab/Simulink 7.10搭建了仿真模型.仿真结果证明了该控制策略的有效性.  相似文献   

15.
针对风电并网功率波动性及高渗透弃风现象,采用共直流母线主动型永磁直驱风电机组结构,建立基于氢储能的永磁直驱风电机组模型,并提出变流器与功率管理协调控制策略。永磁同步发电机与电解槽、燃料电池、蓄电池组汇集直流母线,考虑电解槽需电制氢、燃料电池需氢发电等特性,利用变流器协调控制及功率管理策略,实现风电功率波动抑制、降低风电弃风比例、风电绿色并网。通过PMCAD/EMTDC仿真平台,证明了模型及其控制策略的有效性,有利于风电高渗透并网运行。  相似文献   

16.
VRB储能系统对风电场LVRT特性影响分析   总被引:3,自引:0,他引:3  
为满足电网规定的并网风电场必须具有低电压穿越能力(LVRT)要求,提出一种在风电场并网点加入直接功率控制的钒液流电池(VRB)储能系统的拓扑结构来提高风电场LVRT.根据目前风电机组发展趋势风电场采用基于全功率双脉宽调制AC/DC/AC控制策略的逆变器的永磁直驱风电机组(PMSG),VRB储能系统逆变器采用DC/AC双向功率流动的控制策略.所提出的控制策略通过协调控制风电机组机侧整流器、网侧逆变器和VRB变换器,实现平抑风电场出力和电压跌落时PCC点电压稳定控制及向电网提供一定的无功补偿.仿真结果表明,风速波动和系统电压跌落时,提出的方案可以有效平抑风电场出力波动,提高风电场LVRT能力,减小对系统安全稳定运行的负面影响.  相似文献   

17.
基于机电储能的永磁同步发电机低电压穿越控制策略   总被引:1,自引:0,他引:1  
从功率流向角度对已有低电压穿越(LVRT)方法进行归纳总结,在此基础上提出一种LVRT控制策略:基于机电储能,利用机侧变流器稳定直流母线电压,网侧变流器实现最大风能跟踪。该控制策略结合散热要求大大降低的制动电阻与变桨距调节技术,可以在不增加控制复杂度、不显著增加系统成本的情况下,充分利用风电机组惯性,存储电网电压跌落时系统的不平衡能量,平稳实现LVRT。通过对1.5MW永磁直驱风电系统的MATLAB仿真,验证了所提出的LVRT控制策略的正确性和有效性。  相似文献   

18.
为了提高直驱型永磁同步风力发电机的低电压穿越能力,通过对其在电网电压不对称故障下产生的2倍工频分量机理进行分析,提出了一种基于超级电容储能系统的新型改进控制策略。基于功率平衡的思想,直流侧采用超级电容储能系统,并改用功率外环电流内环的控制策略,以实现不对称故障时堆积在直流侧不平衡功率的平滑控制。同时,在网侧采用双二阶广义积分器锁相环替代传统方法中的单相锁相环,实现不对称故障时正负序基波分量的精确测量。通过Matlab/Simulink仿真表明,该控制策略能有效抑制系统在不对称故障时的网侧有功和直流侧电压二倍频波动,提高系统在不对称故障下的低电压穿越能力,证明了所提出改进控制策略的有效性。  相似文献   

19.
针对转子Crowbar电路的双馈风力发电机组低电压穿越需要闭锁变流器控制脉冲、直流母线电压波动无法较好地抑制,提出了一种定子Crowbar电路模式切换的双馈风电机组低电压穿越控制方案。电网发生故障时,定子Crowbar电路接入系统,双馈风电机组切换至感应发电机组模式下,转子侧变流器采用转子功率外环控制,网侧变流器采用功率协调控制方案,将机侧功率当作前馈量引入到网侧变流器控制策略中并向电网注入无功功率。仿真分析表明,所提控制方案在确保实现双馈风电机组低电压穿越的同时,能够有效地降低转子暂态电流、稳定直流母线电压,并向电网提供无功功率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号