首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
任伟康  刘百宽  田晓利 《硅酸盐通报》2016,35(11):3556-3561
以新疆和静菱镁矿为原料,利用热重分析法研究了升温速率对菱镁矿分解的影响,据此确定最佳升温速率.利用正交实验法控制煅烧温度、保温时间和原料粒度得到不同轻烧氧化镁,采用柠檬酸活性法表征化学活性,分析烧后试样矿物相组成,研究其对轻烧氧化镁活性的影响.结果表明:在相同的温度条件下,菱镁矿的分解程度随着升温速率的增大而减小,热分解温度随着升温速率的增大而提高,升温速率过大会阻碍分解反应进行;煅烧时当菱镁矿转化率为30%,温度在550 ~ 600℃时,分解反应较难进行,最佳升温速率选择5℃/min;煅烧温度对轻烧氧化镁活性影响最大,原料粒度次之,保温时间影响相对较小,最佳轻烧工艺为:煅烧温度800℃、保温120 min、原料粒度为2 mm.  相似文献   

2.
以FeSO4·7H2O,NH4H2PO4,H2O2和NH3·H2O为原料,采用均相沉淀法制备前驱体FePO4·2H2O,再通过流变相法制得LiFePO4/C复合材料,研究了反应温度、搅拌速度和pH值等反应条件对合成LiFePO4/C的影响。采用XRD、SEM和恒流充放电方法表征了材料的结构、形貌和电化学性能。结果表明:当反应温度为60℃,搅拌速度为800 r/min,pH值为2.5时,合成的LiFePO4/C为纯相,且粒度均匀,粒径约为200 nm,在0.1 C充放电倍率下,其首次放电比容量达137 mAh/g。  相似文献   

3.
以FeSO4·7H2O,NH4H2PO4,H2O2和NH3·H2O为原料,采用均相沉淀法制备前驱体FePO4·2H2O,再通过流变相法制得LiFePO4/C复合材料,研究了反应温度、搅拌速度和pH值等反应条件对合成LiFePO4/C的影响。采用XRD、SEM和恒流充放电方法表征了材料的结构、形貌和电化学性能。结果表明:当反应温度为60℃,搅拌速度为800 r/min,pH值为2.5时,合成的LiFePO4/C为纯相,且粒度均匀,粒径约为200 nm,在0.1 C充放电倍率下,其首次放电比容量达137 mAh/g。  相似文献   

4.
张爱菊  沈毅  李子成 《硅酸盐通报》2006,25(1):17-19,25
以固态水玻璃粉末为硅源,三甲基十六烷基溴化铵(CTAB)为模板剂,成功合成了硅基介孔材料。利用 XRD,SEM和TEM技术对介孔材料的结构进行表征,研究了介孔材料在合成过程中CTAB与Si的摩尔比、体系pH值、反应温度及烧成制度对其结构的影响。结果表明:在CTAB与Si的摩尔比为0.15,体系pH值为8.5,反应温度为70 ℃,煅烧升温速度为5℃/min时,合成的样品微观结构较好,孔道分布均匀,且长程有序化程度高。  相似文献   

5.
磷尾矿中的钙、镁、磷资源含量丰富。使用煅烧-浸出法以磷尾矿为原料生产镁盐时,首先需要将磷尾矿煅烧分解为氧化钙和氧化镁,达到活化、提纯的目的。磷尾矿的热分解机理对生成镁盐的质量以及煅烧工艺的选择等都具有重要意义。对磷尾矿热分解动力学特性与煅烧工艺进行了探究,为磷尾矿资源的回收利用提供理论指导。研究表明,在升温速率为10℃/min条件下煅烧温度由25℃升高至1 000℃的过程中,磷尾矿非等温热分解过程可分为两个阶段,即400~500℃白云石分解为碳酸钙与氧化镁的第一阶段和700~900℃碳酸钙分解为氧化钙的第二阶段,并分别确立了相应的热分解动力学方程。较优煅烧条件:煅烧温度为900℃、煅烧时间为4 h、升温速率为15℃/min、尾矿粒度小于0.150 mm。  相似文献   

6.
张世达  卢浩宋 《佛山陶瓷》2022,(10):8-10,35
笔者研究了化学共沉淀法制备ZrSiO4-CdSxSe1-x包裹色料的工艺,进一步探究了温度制度(煅烧温度、升温速率和保温时间)对其合成的包裹色料的影响,并利用扫描电镜、色差仪对实验样品进行表征和分析。实验表明:当煅烧温度为950℃时,升温速率为30℃/min,保温时间为40min,色料在透明釉的呈色效果最佳,色度值坐标...  相似文献   

7.
中孔碳孔径及有序性影响因素   总被引:1,自引:0,他引:1  
以表面活性剂F127为模板剂制备了有序中孔碳材料,研究了影响中孔碳孔径分布及有序性的各工艺参数,采用XRD, SEM, TEM和N2吸/脱附等手段对有序中孔碳进行了表征. 结果表明,F127用量、反应温度、搅拌时间、碳化温度和碳化升温速率等因素直接影响中孔碳结构的有序性及孔径分布. F127用量为40%、反应温度40℃、搅拌时间30 min、碳化温度800℃、升温速率1℃/min时,所得中孔碳有序性好且孔径分布比较集中.  相似文献   

8.
选用碱性兰染料对蔺草进行染色,探讨染液pH值、染色保温温度、染料用量、电解质的用量及染色保温时间对蔺草上染率和摩擦牢度的影响,结果表明,用碱性兰染料对蔺草进行染色时,最佳上染率和摩擦牢度的工艺条件是:染液pH值7~10,染色保温温度80℃,染色温度在70℃以下时升温速率控制在3℃/min,染色温度在70~80℃时升温速率控制在1℃/2 min,染料用量为0.5%~1%(owf),元明粉用量10 g/L,染色保温时间20 min。  相似文献   

9.
本实验采用柠檬酸盐法制备(NaBi)0.5TiO3无铅压电陶瓷粉体,系统研究了柠檬酸浓度、溶液pH值、煅烧温度等工艺条件对制备的影响。经研究分析,当柠檬酸浓度C=9%,溶液pH=7.5时,能形成透明、均匀、稳定的溶胶,且形成时间最短;650℃下煅烧2h能够合成单一的钙钛矿结构的钛酸铋钠晶相,比传统固相反应法煅烧温度降低了200℃。  相似文献   

10.
研究了以蛇纹石为原料制取高纯度活性氧化镁的工艺。以硫酸浸取蛇纹石矿石得到硫酸镁,以精制硫酸镁溶液为原料,氨水、碳酸氢铵为沉淀剂制取碱式碳酸镁前驱体,煅烧碱式碳酸镁前驱体得到高纯度活性氧化镁产品。考察了制取碱式碳酸镁的工艺条件,最佳工艺条件为:预氨pH值为9.6~9.7、镁离子与总铵(NH3+NH4+)摩尔比为0.46、氨与碳酸氢铵摩尔比为1.4。在此条件下,镁的沉淀率达到最大值89%。碱式碳酸镁前驱体最佳煅烧条件为:升温速率10℃/min,煅烧温度650℃,煅烧时间2h。在此条件下得到了碘吸附值为165.1mgI2/gMgO、柠檬酸活性值为3.05s、比表面积为78.03m2/g的高纯活性氧化镁。  相似文献   

11.
以铁粉和H3PO4为原料,采用沉淀法制备了FePO4,并研究了反应温度、反应时间、过氧化氢加入量对FePO4性能的影响。利用X射线衍射分析仪、扫描电子显微镜、激光粒度分析仪、TG/DTA和电感耦合等离子体发射光谱仪等对制备的磷酸铁形貌、晶体结构与化学成分进行了表征。实验结果表明,磷酸铁制备过程的最佳实验条件为:反应温度70℃,反应时间1h,H2O2过量10%滴加时间60min。在最佳条件下制备的磷酸铁粒径为1~4μm,结晶度好,纯度高。样品中铁的质量分数为36.37%,磷的质量分数为20.86%,铁磷物质的量比为0.97,均可达到电池级磷酸铁的标准,完全可以满足磷酸铁锂正极材料前体的要求。  相似文献   

12.
以四氯化钛、氢氧化锂为原料,采用模板法,获得前躯体(Li1.81H0.19)Ti2O5·0.262 5TiO2,再通过煅烧,得到纳米钛酸锂(Li4Ti5O12)。最佳制备工艺条件为:模板∶钛(摩尔比)为4∶1,700℃煅烧1 h。采用TEM电镜观测的粒度达到10~100 nm,XRD拟合粒径5~30 nm,比表面积达100~600 m2/g。  相似文献   

13.
对多因素的复杂实验体系,均匀设计法能在不降低交互作用敏感性分析的前提下,可通过较少的实验次数获得可靠的数学模型,高效优化出最佳工艺条件。本文采用优化组合的U12+(6^6)均匀设计试验方案,考察了微乳液法制备纳米氧化铝前体的工艺条件,获得了氧化铝粉体的粒径与铝盐浓度、沉淀剂浓度、反应温度、表面活性剂与助表面活性剂的体积比、油相与表面活性剂的体积比5个关键因素之间的数学模型。利用该数学模型优化出的最佳制备工艺条件,制备出了氧化铝前体,该前体经1180℃焙烧,转晶为α-Al2O3粉体。α-Al2O3的一次粒子形状为棒状,一次粒子的Scherrer粒径为30nm左右,二次粒子的粒径D50为760nm。  相似文献   

14.
采用高能球磨和喷雾干燥法制备了球形磷酸铁锂材料LFP-1,并制作18650实装电池,测试电极片的压实密度,同时选择一种商业化磷酸铁锂材料LFP-2作为对比。测试结果显示,2种LFP材料均由平均粒径为300~500 nm的一次颗粒组成,比表面积为13~15 m2/g,碳质量分数为1.5%左右。通过CR2032纽扣型电池充放电测试表明,在0.2C时,LFP-1的比放电容量约为165 mA·h/g,与商业化磷酸铁锂材料LFP-2相近。制备18650电池的结果表明,商业化磷酸铁锂LFP-2材料制备的电极片的最高压实密度可以达到2.52 g/cm3,显著高于实验室制得的磷酸铁锂材料LFP-1的最高压实密度2.25 g/cm3,这可能与材料的颗粒粒度分布不同有关。  相似文献   

15.
以氯化锌和碳酸钠为原料,通过均匀沉淀法制备纳米氧化锌。借助激光粒度分析仪及透射电镜等分析手段,探索制备工艺条件对纳米氧化锌粒径及形貌的影响规律。最佳工艺条件:锌离子(Zn2+)初始浓度为0.74 mol/L,碳酸根与锌离子浓度比[c(CO32-)/c(Zn2+)]为1.1,反应温度为90 ℃,反应时间为40 min,煅烧温度为600 ℃,煅烧时间为1 h。在此条件下制备纳米氧化锌颗粒形貌为球形,粒度均匀,粒径约为25 nm,二次粒径(D50)为549.9 nm,分散性好。该工艺条件为低成本工业化制备纳米氧化锌提供了基础数据。  相似文献   

16.
牙舟陶在陶瓷业界具有举足轻重的地位,陶土对牙舟陶性能具有重要的影响。为加强对牙舟陶的研究,采用化学分析法、激光粒度仪、X射线衍射仪、综合热分析仪、数显白度仪等测试手段对牙舟陶土的化学组成、粒度分布、晶相组成、热性能及白度进行了检测。结果表明:牙舟陶土主要由石英和珍珠石组成,石英质量分数为59.34%、珍珠石质量分数为34.78%。牙舟陶土颗粒分布广泛,粒径小于6.5 μm的颗粒质量分数达到58.67%,粒径越小石英含量越低。在此基础上,结合贵州黔南丰富的磷矿资源,研究加入磷矿后牙舟陶土在煅烧过程中白度、硬度及物相组成的变化规律。研究表明:牙舟陶土的白度随着温度的升高先增大后减小,在1 100 ℃时达到最大值45.5%;加入磷矿组分后,在1 100 ℃时牙舟陶土的白度增加至54%,且煅烧时固熔体形成温度下降、烧结温度降低,并伴随钙长石矿物的产生。  相似文献   

17.
磷酸铁是合成磷酸铁锂电池正极材料的主要原料,目前多采用硫酸亚铁和磷酸盐共沉淀方法制备。硫酸体系内共沉淀获得的磷酸铁中硫杂质含量较高,目前采用水洗方式脱除,吨磷酸铁洗水用量需60~100吨,硫酸盐废水处理成本高。为从源头削减磷酸铁脱硫过程产生的大量废水,根据硫酸盐高温分解的性质,提出磷酸铁高温煅烧脱硫新方法,开展了热力学可行性计算与高温煅烧脱硫动力学研究。结果表明,磷酸铁中硫元素主要以硫酸根形式存在,高温煅烧可有效促进含硫杂质分解,温度越高,脱硫效果越好。高温煅烧脱硫过程反应动力学级数为2,活化能为88.075 kJ/mol,属于化学反应控制。在温度1173 K、煅烧时间10 min的条件下,磷酸铁中硫杂质含量可降至0.01wt%以下。  相似文献   

18.
超细二水磷酸铁的制备研究   总被引:1,自引:0,他引:1  
以六水氯化铁、磷酸为原料,采用沉淀法制备超细二水磷酸铁,用阳离子表面活性剂CTAB控制颗粒生长和防止颗粒团聚。通过实验分析各因素对二水磷酸铁粒径的影响,得出较佳合成工艺条件为:投料比(磷铁物质的量比)为1.50,反应温度为85 ℃,阳离子表面活性剂CTAB用量为铁盐质量的1.5%。在此条件下得到的产物是平均粒径为1.5 μm的单斜晶型二水磷酸铁,其粒度分布均匀,分散性好。  相似文献   

19.
依托新颖的表面表征技术开尔文探针力显微镜(KPFM)获悉磷酸铁锂表面势的情况,以期深入研究锂离子在磷酸铁锂表面的动力学行为。研究结果表明,磷酸铁锂薄膜在常温下的功函数为5.38 eV,并且其功函数随着外界温度的上升而呈现出逐渐下降的趋势,在80 ℃时的功函数为4.69 eV。此现象意味着高温状况下的磷酸铁锂具有较好的电子迁移能力。此外,非原位的开尔文探针检测发现不同电压平衡状态下的磷酸铁锂具有不同的表面功函数。充电至4.3 V时,磷酸铁锂功函数为4.91 eV,放电至2.5 V时,功函数稳定在5.01 eV。显然,磷酸铁锂的功函数非常敏感于表面的锂离子脱出量。研究从功函数的新角度探究磷酸铁锂表面的锂离子动力学行为,期望能够为其他储能材料的脱锂过程研究提供参考。  相似文献   

20.
以NH_3·H_2O and Fe(NO_3)_3·9H_2O为原料,采用共沉淀法得到前驱体,分别在150、250、350、450、550℃锻烧前驱体制备了Fe_2O_3,借助拉曼光谱、热重分析仪、X射线衍射、透射电子显微镜和紫外-可见光谱对其进行了表征。通过降解偏二甲肼废水,比较了不同锻烧温度下所得催化剂光催化的活性。结果表明,Fe_2O_3的结晶性和粒径大小同时决定光催化性能,锻烧温度小于450℃时,结晶性起决定作用,锻烧温度大于450℃时,粒径大小起决定作用,450℃锻烧的Fe_2O_3光催化降解偏二甲肼废水的效果最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号