首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
《Fuel》2007,86(1-2):210-217
Biodiesel has attractive fuel properties such as excellent biodegradability and lubricity, almost no emissions of sulfur oxides, PAH and n-PAH, reduced CO2, PM and CO emission, superior combustion efficiency, etc. However, burning of biodiesel generally produces higher levels of NOx emissions, primarily due to its high oxygen content. In this study, the emulsification technology has been considered to reduce the NOx emission level of fossil fuel. Biodiesel, produced by means of transesterification reaction accompanied with a peroxidation process, was emulsified to form two-phase W/O and three-phase O/W/O emulsions. The effects of the emulsification variables such as hydrophilic lipophilic balance (HLB), and water content on the fuel properties and emulsion characteristics of W/O and O/W/O emulsions were investigated in this study. The experimental results show that the surfactant mixture with HLB = 13 produced the highest emulsification stability while HLB = 6 produced the lowest emulsification stability and the most significant extent of water–oil separation among the various HLB values for O/W/O biodiesel emulsion. The kinematic viscosity, specific gravity and carbon residual of the biodiesel emulsions were larger than those of the neat biodiesel. In addition, the W/O biodiesel emulsion was found to have a smaller mean droplet size, lower volumetric fraction of the dispersed phase than the O/W/O biodiesel emulsion, and the highest heating value among the test fuels, if the water content is deducted from the calculation of the heating value.  相似文献   

2.
Multiple liquid emulsions of the water in oil in water (W1/O/W2) type are used in a variety of consumer or technical applications, for instance in the encapsulation of certain active ingredients. The encapsulation process and release mechanisms of the inner phase of the carrier drops are important in order to properly process and formulate such liquid-liquid systems. In this work the stability and breakage of multiple W1/O/W2 emulsions under mechanical shear stress are investigated for emulsions with different surfactants and surfactant concentrations of the internal emulsion. Stressing the emulsions in a mechanical stirring process is compared to the membrane emulsification process. The membrane emulsification process results in higher encapsulation efficiencies than the stirring process. The emulsion droplets were subjected to shear stress below and above the critical capillary number for drop breakup. The results show that stable inner emulsions with sufficient surfactant concentrations increase the overall encapsulation efficiency for multiple emulsions subjected to shear stress, although the effect is not prominent. The depletion of the carrier oil droplets could be achieved for Ca numbers below the critical limit, reducing the encapsulation efficiency below 10 %. This shows that even a low shear stress can result in content release from the internal droplet phase. The experimental emulsion release study is supported by a numerical simulation of drop deformation and break-up under shear stress.  相似文献   

3.
A novel type of multiple emulsions which contain a microemulsion in macrodroplets, was prepared by a two-step emulsification procedure. Mineral oil was used as the oil phase with a mixture of Aerosol OT and Span 20 as primary emulsifiers. A water-in-oil microemulsion was prepared by gradual addition of water in oil containing both these emulsifiers. This microemulsion system, when dispersed in an aqueous solution containing secondary emulsifier, produces water-in-oil-in-water (W/O/W) multiple emulsions. The release rate of solute dissolved in the internal aqueous phase was measured using the dialysis technique. A theoretical model describing the diffusion of a multiple emulsion system was developed, which predicts the half-life for 50% of the internal solute to diffuse to the external phase. Experimental results showed the stability of multiple emulsions improved significantly upon using a thermodynamically stable microemulsion as a primary emulsion and a polymeric surfactant as a secondary emulsifier. As a resull, half-life of these multiple emulsions is greater than that of conventional multiple emulsions.  相似文献   

4.
We developed a novel method for preparing lipid vesicles with high entrapment efficiency and controlled size using water‐in‐oil‐in‐water (W/O/W) multiple emulsions as vesicle templates. Preparation consists of three steps. First, a water‐in‐oil (W/O) emulsion containing to‐be‐entrapped hydrophilic molecules in the water phase and vesicle‐forming lipids in the oil phase was formulated by sonication. Second, this W/O emulsion was introduced into a microchannel emulsification device to prepare a W/O/W multiple emulsion. In this step, sodium caseinate was used as the external emulsifier. Finally, organic solvent in the oil phase was removed by simple evaporation under ambient conditions to afford lipid vesicles. The diameter of the prepared vesicles reflected the water droplet size of the primary W/O emulsions, indicating that vesicle size could be controlled by the primary W/O emulsification process. Furthermore, high entrapment yields for hydrophilic molecules (exceeding 80 % for calcein) were obtained. The resulting vesicles had a multilamellar vesicular structure, as confirmed by transmission electron microscopy.  相似文献   

5.
白油W/O/W型多重乳状液的稳定性研究   总被引:5,自引:0,他引:5  
以多重乳状液相对体积为衡量标准,用显微镜直接观察,探讨了乳化剂的HLB值、质量分数、亲油亲水乳化剂体积比及油水的相比等对白油W/O/W型多重乳状液体系稳定性的影响。结果表明单一乳化剂体系中适宜的制备条件:乳液中乳化剂质量分数为12.2%,V(Span80)/V(Tween80)=7.5;适合多重乳液稳定的油水相比为:第一相体积比为2.5,第二相体积比为0.2。复合乳化剂体系中适宜的制备条件:第一相乳化剂的HLB值为6.5,V(复合乳化剂)/V(Tween80)=27.5,乳液中乳化剂质量分数为9.5%。  相似文献   

6.
Cherng-Yuan Lin  Kuo-Hua Wang 《Fuel》2003,82(11):1367-1375
Diesel engines are employed as the major propulsion power for in-land and marine transportation vehicles primarily because of their rigid structure, low breakdown rate, high thermal efficiency and high fuel economy. It is expected that diesel engines will be widely used in the foreseeable future. However, the pollutants emitted from diesel engines (in particular nitrogen oxides and particulate matter) are detrimental to the health of living beings and ecological environment have been recognized as the major air pollution source in metropolitan areas and have thus attracted much research interest. Although diesel oil emulsion has been considered as a possible approach to reduce diesel engine pollutants, previous relevant applications were restricted to two-phase emulsions. Three-phase emulsions such as oil-in-water-in-oil briefly denoted as O/W/O emulsions and water-in-oil-in-water, denoted as W/O/W, have not been used as an alternative fuel for any combustion equipment. Studies on the properties of three-phase emulsion as fuel have not been found in the literatures. The emulsification properties of an O/W/O three-phase diesel fuel emulsion were investigated in this experimental study. The results show that the mean drop size of the O/W/O emulsion was reduced significantly with increasing homogenizing machine revolution speed. An increase in inner phase proportion of the O/W/O emulsion resulted in increasing the emulsion viscosity. The viscosity of O/W/O emulsion is greater than that for water-in-oil (denoted briefly as W/O emulsion) for the same water content. More stable emulsion turbidity appeared for three-phase O/W/O diesel emulsions added with emulsifier with HLB values ranging from 6 to 8. In addition, three-phase O/W/O emulsions with greater water content will form a larger number of liquid droplets, leading to a faster formation rate and greater emulsion turbidity at the beginning but a faster descending rate of emulsion turbidity afterwards. The potential for using O/W/O emulsions as an alternative fuel for diesel engines was also evaluated.  相似文献   

7.
以白油为乳化对象 ,AEO3 、AEO9、TX4 、TX12 为乳化剂 ,在不同的乳化剂配比 (HLB值 )、用量的实验条件下 ,通过观察乳液破乳 ,分层的程度和测定乳液显微镜粒径分布 ,发现乳液稳定性随HLB值的变化规律与文Ⅰ相同 ,可用同样的界面模型稳定机理解释。本文还考察了乳化剂用量、超声乳化、乳化剂种类对乳液稳定性的影响。实验中发现乳化体系的最佳HLB值随活性剂用量的增加而上升 ,此现象被解释为粒子粒径小的乳化体系的最佳HLB值更大。  相似文献   

8.
高脂食品严重危害着人类健康,这引起人们对低脂食品的的不断追求,因此脂肪替代品的开发越来越受到人们重视。本试验以玉米油和生物高聚物为主要原料通过两步乳化法制备W1/O/W2多重乳状液作为脂肪替代品(FS),以离心稳定性为衡量标准,用显微镜直接观察,探讨了初复乳乳化工艺、各相相对体积比对玉米油W1/O/W2型多重乳状液体系稳定性的影响。结果表明:1.影响玉米油多重乳状液稳定性的主要因素有:复乳的乳化工艺,内水相与油相体积之比等。2.两步乳化工艺中第二步乳化工艺对复乳稳定性影响较大,其规律是随着乳化强度的提高,粒径减小,稳定性呈上升趋势,适宜的乳化条件为7200 r.min.1,13 min,而第一步乳化工艺对复乳稳定性几乎没有影响。3.内水相与油相、初乳与外水相均是影响复乳稳定性的主要因素,前者主要是依靠改变初乳黏度来影响复乳稳定性,后者主要是乳滴间范德华力与电排斥力共同作用的结果,适宜的体积比分别为1:4和1:1。  相似文献   

9.
Water-in-soybean oil-in-water (W/O/W) emulsions with an internal water phase content of 10–30% (vol/vol) were prepared by a two-step emulsification method using microfluidization and straight-through microchannel (MC) emulsification. A straight-through MC is a silicon array of micrometer-sized through-holes running through the plate. Microfluidization produced water-in-oil (W/O) emulsions with submicron water droplets of 0.15–0.26 μm in average diameter (d av,w/o) and 42–53% in CV (CVw/o) using tetraglycerin monolaurate condensed ricinoleic acid esters (TGCR) and polyglycerin polycondensed ricinoleic acid esters (PGPR) as surfactants dissolved in the oil phase. The d av,w/o and viscosity of the W/O emulsions increased with an increase in internal water phase content. Straight-through MC emulsification was performed using the W/O emulsions as the to-be-dispersed phase and polyoxyethylene (20) sorbitan monooleate (Tween® 80) as a surfactant dissolved in the external water phase. Monodisperse W/O/W emulsions with d av,w/o/w of 39.0–41.0 μm and CVw/o/w below 5% were successfully formed from a straight-through MC with an oblong section (42.8×13.3 μm), using the TGCR-containing systems. The d av,w/o/w of the monodisperse W/O/W emulsions decreased as the internal water phase content increased because of the increase in viscosity of the to-be-dispersed phase. Little leakage of the internal water droplets and no droplet coalescence or droplet break-down were observed during straight-through MC emulsification.  相似文献   

10.
In many emulsion systems, creaming occurs during the first stage of emulsion breakdown. To reduce the rate of creaming, emulsions having small and uniform droplets are desirable. In this work, types and HLB of nonionic surfactants, emulsification methods, and combinations of oils and nonionic surfactants were investigated in order to make stable and homogeneous emulsions. Emulsification was attained by dissolving the surfactants in the oil phases. The addition speed and volume of water to the oil phases were important factors affecting the emulsion droplet size. The change of the solute state in the process of emulsification was observed stage by stage, and the mechanism of emulsification was elucidated. Homogeneous emulsions were formed in the HLB region, showing liquid crystalline and gel phases in the emulsifying process. The addition speed of water to the oil phase was very important in forming the liquid crystalline and gel phases. Polyoxyethylene(n)sorbitan monostearate could emulsify three kinds of oils (hydrocarbon, fatty acid ester and triglyceride). Polyoxyethylene(n)alkyl ether could emulsify hydrocarbon and fatty acid ester. Polyoxyethylene(n)-monostearate could emulsify only hydrocarbon. Surfactants with proper HLB which were soluble in the oil phase and in the presence of a very small amount of water formed a stable emulsion. The solubility state of oil and surfactant was the key to making a fine emulsion.  相似文献   

11.
A stable formula using oil-in-water-in-oil (O/W/O) type multiple emulsions was investigated. The components consisted of hydrophilic nonionic surfactant (HCO-60), organophilic montmorillonite, and lipophilic nonionic surfactant (DIS-14). O/W/O emulsions were prepared by a double-step procedure in which an O/W emulsion was prepared in the first step, and then the O/W emulsion was “re-emulsified” in an oil phase with organophilic montmorillonite. The diameter of the innermost oil droplets decreased with increasing HCO-60 content (0.1–3%), while the viscosity showed a maximum at 1% of HCO-60, indicating that the yiel of re-emulsification is highest at this condition. Viscosity of the O/W/O emulsion increased with increasing organophilic montmorillonite and DIS-14. According to the results of a phase ratio study, viscosity and stability of the O/W/O emulsion decreased at high weight fraction of inner oil phase (0.4–0.5), indicating that the excess amount of inner oil phase is absorbed by the outer oil phase. These results revealed that the weight fraction of inner oil phase should be kept below 0.3 for a stable O/W/O emulsion. A similar study on the weight fraction of O/W phase [фO/W)/O] suggested that the O/W/O emulsion is stable at ϕ(O/W)/O=0.65–0.70.  相似文献   

12.
制备单分散含单体O/W乳液的SPG膜乳化过程   总被引:2,自引:0,他引:2       下载免费PDF全文
谢锐  褚良银  陈文梅 《化工学报》2006,57(4):874-879
采用Shirasu多孔玻璃(SPG)膜乳化法制备了单分散含对苯二甲酰氯(TDC)单体的O/W乳液,系统地研究了SPG膜乳化过程的影响因素.实验结果表明,采用SPG膜乳化法制备单分散O/W乳液时,选择阴离子表面活性剂比考虑亲水亲油平衡(HLB)匹配更重要;增大分散相或连续相的黏度,能够改善乳液的单分散性和稳定性;随着单体浓度增加,乳液的单分散性变差,液滴的平均粒径逐渐变小.当SPG膜孔径大于1.0 μm左右时,可得到单分散的含TDC单体乳液;而当孔径小于1.0 μm左右时,水分子更容易扩散并溶解到油水界面甚至油相内部与TDC生成对苯二甲酸(TPA),TPA积累到一定程度在油水界面上析出将膜孔堵塞,从而无法制得单分散乳液.随着乳化时间增长,乳液的平均直径逐渐变小、单分散性逐渐变差.  相似文献   

13.
Diesel engines exhausting gaseous emission and particulate matter have long been regarded as one of the major air pollution sources, particularly in metropolitan areas, and have been a source of serious public concern for a long time. The emulsification method is one of the potentially effective techniques to reduce emission pollution from diesel engines. Ultrasonic waves are a kind of sound waves with a frequency larger than 20 kHz, and they cannot be detected by the human ear. The phenomena of cavitation and hot spots produced by the rather violent action of ultrasonic waves can cause rapid chemical and physical reactions. This allows immiscible liquids to be well stirred with each other by means of ultrasonics. An ultrasonically vibrating machine that provides ultrasonic waves of a 40-kHz frequency was employed to prepare two- and three- phase emulsions in this experimental study. The fuel properties and the emulsion stability of the diesel emulsions were measured and analyzed. Experimental results show that the ultrasonic emulsification method successfully prepared two- and three-phase emulsions with tiny dispersed-phase droplets that are very evenly distributed in the outer oil or water phase. The ultrasonic processing time, quantity and HLB of the emulsifying agent were noted to have determinative influences on the formation of the emulsion and the fuel properties. A longer ultrasonic processing time caused less un-emulsified diesel fuel, smaller sizes and a more even distribution of dispersed-phase droplets in the outer oil phase and larger emulsion viscosity. However, a longer ultrasonic processing time also produced a larger temperature rise in the emulsion, leading to the deterioration of the emulsion stability. The O/W emulsion was found to have the lowest percentage of separation and thus the highest emulsion stability among the O/W/O, O/W and W/O emulsions. In addition, in comparison with the W/O emulsion, the O/W emulsion was shown to have a smaller size and a more even distribution of the dispersed-phase droplets. It also had a lesser rise in emulsion temperature when the ultrasonic processing time increased. The control of the ultrasonic processing time is important to successfully prepare the three-phase O/W/O emulsion. Too long a vibration time at the second-stage of emulsification is shown to cause the dispersed-phase pellets to contract and congregate with the inner-phase droplets. The three-phase emulsion structure then finally disappears and transforms into a two-phase emulsion. The addition of 2% by volume of the emulsifier mixture of Span80 and Tween80 with a HLB = 8, as suggested by this study for the preparation of stable two- and three-phase emulsions, were observed to have the lowest percentage of separation of the W/O and O/W/O emulsions. For preparing a stable O/W emulsion, the proportion of the emulsifier could be as low as 1.5% by volume. The percentage of separation of the O/W/O emulsion was lower and less influenced by the change in emulsion temperature than was the W/O emulsion with the same water content. However, the O/W/O emulsion was found to have a larger viscosity and a more significant variation of its viscosity, depending on the ultrasonic processing time, than the W/O emulsion.  相似文献   

14.
In this work, water-in-oil emulsions (W/O) and ethanol-in-oil emulsions (E/O) emulsions were prepared successfully by membrane emulsification. The emulsifiers selected were PGPR and MO-750 for the W/O and E/O emulsions, respectively. For W/O emulsions prepared with an oil pre-filled membrane, the dispersed flux was lower and the droplet size sharper than that obtained with a water pre-filled membrane. On the contrary, for E/O emulsions prepared with the membrane pre-filled with oil, the dispersed phase (ethanol) rapidly pushed out the oil from the membrane pores. Therefore, the pre-treatment of the membrane had almost no effect on the dispersed phase flux and on the droplet size. The droplet size distribution of the E/O emulsion was close to that obtained with a classical homogenizer. The dispersed phase fluxes were high and no fouling was observed for our experimental conditions (1.6 l emulsion, 10 wt% ethanol). These results confirm that membrane emulsification could be an interesting alternative for the preparation of E/O emulsions for the purpose of biodiesel fuels, considering the scale-up ability of membranes and their potentiality for industrial processes.  相似文献   

15.
A novel emulsification method was developed for making monodispersed regular-sized cells. Both oil in water (O/W) and water in oil (W/O) emulsion cells were generated by permeating an internal phase into a continuous phase through a silicon microchannel, which was designed and prepared by using semiconductor technology. The microprocessing of O/W (or W/O) emulsion cells was monitored and controlled with a microscope video system. Regular-sized O/W cells were made by a normal hydrophilic microchannel and a glass plate with use of an appropriate surfactant. On the other hand, W/O emulsion cells were made by a hydrophobic microchannel and a glass plate modified with a silane coupler reagent. Regular-sized W/O cells were also obtained; therefore, a suitable combination of organic phase, surfactant, and electrolyte should be carefully selected. There is a possibility for creating artificial biological cells with this method. In the water/triolein and lecithin system, when the amount of oil was decreased on the permeate side, polygon or fiber cell types were created, and each cell contacted its neighbors across a thin oil layer like a biological tissue.  相似文献   

16.
Cherng-Yuan Lin  Li-Wei Chen 《Fuel》2008,87(10-11):2154-2161
Emulsions have long been considered as an alternative fuel for combustion equipment in order to achieve better fuel economy and pollution reduction. While a mechanical homogenizing method is frequently used to prepare emulsions, the use of an ultrasonic emulsification method to do so is still rather limited, and is mostly applied to two-phase emulsions only. Hence, two-phase W/O and three-phase O/W/O emulsions, prepared by a mechanical homogenizer and an ultrasonic vibrator, respectively, were prepared and used as engine fuel. The emulsion properties, engine performance, and engine emission characteristics between these two emulsification methods were measured and compared. The potential of the ultrasonic emulsification method was also evaluated. The experimental results show that the emulsions prepared by the ultrasonic vibrator appeared to have more favorable emulsification characteristics such as smaller dispersed water droplets that were distributed more uniformly in the continuous oil phase, lower separation rate of water droplets from the continuous phase of diesel fuel and thus a lower separating rate of the dispersed water droplets from the emulsion, larger emulsion stability, and larger emulsion viscosity than the emulsions produced using a mechanical homogenizer. In addition, a larger content of water was emulsified when the emulsion was prepared using the ultrasonic vibrator than the mechanical homogenizer. The emulsions prepared by the ultrasonic vibrator also had a lower fuel consumption rate, lower bsfc, and significantly lower CO emission while at the same time having a larger black smoke opacity. When comparing the two-phase W/O and the three-phase O/W/O emulsions prepared by either the ultrasonic vibrator or the mechanical homogenizer, the two-phase W/O emulsions appeared to have a lower fuel consumption rate, bsfc, CO, and a lower black smoke opacity than the three-phase O/W/O emulsions, regardless of whether they were prepared by ultrasonic vibrator or mechanical homogenizer.  相似文献   

17.
This work shows the formation of a high internal phase ratio oil‐in‐water (O/W) emulsion using a new type of a two‐rod batch mixer. The mixture components have sharply different viscosities [1/3400 for water‐in‐oil (W/O)], similar densities (1/0.974 for W/O), and an O/W ratio of 91% (wt/wt). The simple design of this mixer leads to a low‐energy process (106 < energy density [J m?3] < 107), characterized by low rotational speed and laminar flow. The droplet size distribution during the emulsification was investigated according to different physical and formulation parameters such as stirring time (few minutes < t < 1 h), rotational speed (60 < Ω < 120 rpm), surfactant type (Triton X‐405 and X‐100), concentration (from 1 to 15.9 wt % in water), and salt addition (30 g/L). We show that all studied parameters allow a precise control of the droplet size distribution and the rheology. The resulting emulsions are unimodal and the mean droplet diameter is between 30 μm and 8 μm. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

18.
The turbidity ratio method of evaluating the stabilities of water-in-oil emulsions has been established with two wavelengths (450 and 850 nm) by taking the intensity ratio of two beams. The slopes of turbidity ratio of several water-in-oil emulsions with time were calculated to evaluate the emulsion stabilities at different HLB (Hydrophilie-Lipophile Balance), the amounts of emulsifiers, and water contents. The results of the turbidity ratio technique were consistent with the amount of phase separation of emulsions incubated for 30 days at room temperature. From the turbidity ratio measurements, we determined that the required HLB of diesel oil was about 6.0, and that the stability of emulsion increased with the amount of emulsifier. The increasing amount of the water showed a negative effect on emulsion stability. Finally, this method provides a useful tool for the quick evaluation of the required HLB and the condition of emulsification throughout this study.  相似文献   

19.
This study considered the stability and rheology of a type of high internal phase water-in-oil emulsions (W/O) emulsion. The aqueous phase of the emulsions is a super-cooled inorganic salt solution. The oil phase is a mixture of industrial grade oils and stabilizer. Instability of these systems manifests as crystallization of the metastable dispersed droplets with time. This work focused on the effects of oil polarity and oil viscosity on the stability of these emulsions. Ten types of industrial oils, covering the viscosity range 1.4–53.2?cP, and with varying polarity, were used in combination with polymeric poly(isobutylene) succinic anhydride (PIBSA) and sorbitan monooleate (SMO)-based surfactants. The effect of oil relative polarity on rheological parameters of the emulsion was evident mainly in the emulsions stabilized using polymeric surfactant, whereas the oil viscosity did not show any significant effect. The optimum stability of the emulsions stabilized with SMO was achieved using high polar oils with a viscosity of 3?±?0.5?cP. However, when using the PIBSA surfactant, the best emulsion stability was achieved with low polar, high viscosity oils.  相似文献   

20.
AM/AMPS/SSS三元反相乳液聚合体系稳定性研究   总被引:1,自引:0,他引:1  
潘岳  于小荣  王海林 《应用化工》2012,41(2):321-323,328
以丙烯酰胺(AM)为主单体、2-甲基-2-丙烯酰胺基丙磺酸(AMPS)、对苯乙烯磺酸钠(SSS)为抗温抗盐单体,以白油为连续相,Span 80/Tween 80为复合乳化剂,制得了AM/AMPS/SSS三元反相乳液聚合体系,考察了HLB值、乳化剂浓度、油水比、pH值、搅拌时间、搅拌速度对乳液稳定性的影响。结果表明,乳化剂含量为6%~7%(体系总量),HLB值为5.89,体系pH=8,油水体积比为1.8∶1,搅拌时间30~40 min,搅拌速度为500 r/min时得到稳定的反相乳液体系,适合进行三元反相乳液聚合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号