首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Graft copolymerization of methyl acrylate (MA) and acrylonitrile (AN) onto acacia cellulose was carried out using free radical initiating process in which ceric ammonium nitrate (CAN) was used as an initiator. The optimum grafting yield was determined by the certain amount of acacia cellulose (AGU), mineral acid (H2SO4), CAN, MA, and AN at 0.062, 0.120, 0.016, 0.397, and 0.550 mol L?1, respectively. The poly(methyl acrylate‐co‐acrylonitrile)‐grafted acacia cellulose was obtained at 55°C after 2‐h stirring, and purified acrylic polymer‐grafted cellulose was characterized by FTIR and TG analysis. Therein, the ester and nitrile functional groups of the grafted copolymers were reacted with hydroxylamine solution for conversion into the hydroxamic acid and amidoxime ligands. The chelating behavior of the prepared ligands toward some metal ions was investigated using batch technique. The metal ions sorption capacities of the ligands were pH dependent, and the sorption capacity toward the metal ions was in the following order: Zn2+ > Fe3+ > Cr3+ > Cu2+ > Ni2+. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Amidoximated grafted cellulose was obtained by reacting hydroxylamine and cellulose‐graft‐polyacrylonitrile (C‐g‐PAN), prepared by KMnO4/citric acid redox system, and the resultant amidoximated grafted cellulose was characterized by scanning electron microscope (SEM), solid‐state NMR, FTIR, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and elemental analysis. The highest value of amidoxime content in the grafted sample was 2.42 mmol/g. The adsorption efficiencies of amidoximated grafted cellulose have been evaluated with studying different adsorption conditions. Amidoximated sample with amidoxime content 2.42 mmol/g showed high ability to adsorb the metal ions from the aqueous solutions as high as 1.7 mmol/g, 1.6 mmol/g, and 0.84 mmol/g for Co2+, Cu2+, Ni2+ ions, respectively, at the highest original metal ion concentration. These values are about three times larger than previous studies. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
《分离科学与技术》2012,47(14):3123-3139
Abstract

An electron beam grafted adsorbent was synthesized by post irradiation grafting of acrylonitrile (AN) on to a non‐woven thermally bonded polypropylene (PP) sheet using 2 MeV electron beam accelerator. The grafted poly(acrylonitrile) chains were chemically modified to convert a nitrile group to an amidoxime (AMO) group, a chelating group responsible for metal ion uptake from an aqueous solution. The effect of various experimental variables viz. dose, dose rate, temperature, and solvent composition on the grafting extent was investigated. PP grafted with the amidoxime group (AMO‐g‐PP) was tested for its suitability as an adsorbent for removal of heavy metal ions such as Co2+, Ni2+, Mn2+, and Cd2+ from aqueous solution. Langmuir and Freundlich adsorption models were used to investigate the type of adsorption of these ions. The adsorption capacities of the adsorbent for the metal ions were found to follow the order Cd2+>Co2+>Ni2+>Mn2+. The kinetics of adsorption of these ions indicated that the rate of adsorption of Cd2+ was faster than that of other ions studied.  相似文献   

4.
The effect of composition of graft chains of four types cellulose graft copolymers on the competitive removal of Pb2+, Cu2+, and Cd2+ ions from aqueous solution was investigated. The copolymers used were (1) cellulose‐g‐polyacrylic acid (cellulose‐g‐pAA) with grafting percentages of 7, 18, and 30%; (2) cellulose‐g‐p(AA–NMBA) prepared by grafting of AA onto cellulose in the presence of crosslinking agent of N,N′‐methylene bisacrylamide (NMBA); (3) cellulose‐g‐p(AA–AASO3H) prepared by grafting of a monomer mixture of acrylic acid (AA) and 2‐acrylamido‐2‐methyl propane sulphonic acid (AASO3H) containing 10% (in mole) AASO3H; and (4) cellulose‐g‐pAASO3H obtained by grafting of AASO3H onto cellulose. The concentrations of ions which were kept constant at 4 mmol/L in an aqueous solution of pH 4.5 were equal. Metal ion removal capacities and removal percentages of the copolymers was determined. Metal ion removal capacity of cellulose‐g‐pAA did not change with the increase in grafting percentages of the copolymer and determined to be 0.27 mmol metal ion/gcopolymer. Although the metal removal rate of cellulose‐g‐p(AA–NMBA) copolymer was lower than that of cellulose‐g‐pAA, removal capacities of both copolymers were the same which was equal to 0.24 mmol metal ion/gcopolymer. Cellulose did not remove any ion under the same conditions. In addition, cellulose‐g‐pAASO3H removed practically no ion from the aqueous solution (0.02 mmol metal ion/gcopolymer). The presence of AASO3H in the graft chains of cellulose‐g‐p(AA–AASO3H) created a synergistic effect with respect to metal removal and led to a slight increase in metal ion adsorption capability in comparison to that of cellulose‐g‐pAA. All types of cellulose copolymers were found to be selective for the removal of Pb2+ over Cu2+ and Cd2+. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2034–2039, 2003  相似文献   

5.
A new chelating ion‐exchange resin containing the hydroxamic acid functional group was synthesized from poly(methyl acrylate) (PMA)‐grafted sago starch. The PMA grafted copolymer was obtained by a free‐radical initiating process in which ceric ammonium nitrate was used as an initiator. Conversion of the ester groups of the PMA‐grafted copolymer into hydroxamic acid was carried out by treatment of an ester with hydroxylamine in an alkaline solution. The characterization of the poly(hydroxamic acid) chelating resin was performed by FTIR spectroscopy, TG, and DSC analyses. The hydroxamic acid functional group was identified by infrared spectroscopy. The chelating behavior of the prepared resin toward some metal ions was investigated using a batch technique. The binding capacities of copper, iron, chromium, and nickel were excellent and the copper capacity was maximum (3.46 mmol g−1) at pH 6. The rate of exchange of the copper ion was very fast that is, t1/2 < 5 min. It was also observed that the metal ion‐sorption capacities of the resin were pH‐dependent and its selectivity toward the metal ions used is in the following order: Cu2+ > Fe3+ > Cr3+ > Ni2+ > Co2+ > Zn2+ > Cd2+ > As3+ > Pb2+. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1256–1264, 2001  相似文献   

6.
A novel amidoxime‐based silica adsorbent was prepared by using radiation‐induced grafting technique. Grafting of acrylonitrile (AN) on silanized silica that was silanized by vinyltriethoxysilane (VTES) was carried out in solvent‐free system. The grafting of AN was increased with increasing the absorbed dose and monomer concentration in the mixture. Grafting of 748% of AN was achieved at 20 kGy dose. The nitrile groups of acrylonitrile grafted silica (AN‐g‐S) were chemically converted into amidoxime groups. The structure of AN‐g‐S and its corresponding products was investigated by FTIR, SEM, TGA, BET, and XRD analysis. FTIR and EDX analysis confirmed the grafting of AN onto silica surface. The changed morphology of SEM images shows the presence polyacrylonitrile layers on silica particles. The adsorption application of amidoxime‐grafted silica (AO‐g‐S) was studied against Cu2+. Its adsorption capacity is strongly depended on the pH of the solution and 172 (mg/g) of Cu2+ uptake was obtained at pH 5.0. The developed adsorbent has potential application to remove heavy metal ions from aqueous solutions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45437.  相似文献   

7.
Heavy metals pollutants are nonbiodegradable and their bioaccumulation results in detrimental environmental consequences. Therefore, it is important to effectively remove toxic heavy metal waste from industrial sewage. Thus, the main goal of this research is to synthesize an ideal cellulose-based adsorbent from palm-based waste materials (agro waste) in order to be utilized in real-life practical applications with low cost as such removing common toxic heavy metals from industrial effluents. A poly(methyl acrylate) grafted palm cellulose was synthesized via a free-radical initiation process, followed by an oximation reaction to yield poly(hydroxamic acid) ligands. The adsorption capacity (qe) of poly(hydroxamic acid) ligands for metal ions such as copper (Cu2+), iron (Fe3+), and lead (Pb2+) were 325, 220, and 300 mg g−1, respectively at pH 6. In addition, the X-ray photoelectron spectrometry results are to be proved the binding of metal ions, for instance, Cu(II) ions showed typically significant BEs of 932.7 and 952.0 eV corresponding to the Cu2p3/2 and Cu2p1/2 species. The heavy metal ions adsorption followed a pseudo-first-order kinetic model pathway. The adsorption capacity (qm) is also derived from the Langmuir isotherm linear plot, which does not showed good correction coefficients. However, the results were correlated to the Freundlich isotherm model, where the R2 value showed significance (>0.98), indicating that multiple layer adsorption occurs on the synthesized ligand. The synthesized polymeric ligand is an excellent adsorbent for the removal of heavy metals from the industrial wastewater. In addition, the metal analysis results showed that about 98% removal of copper and iron ions from electroplating wastewater including lead, nickel, and chromium can be removed up to 85–97%.  相似文献   

8.
A novel polymeric ligand having 2,2′:6′,2″‐terpyridine as pendant group was prepared through a Williamson type etherification approach for the reaction between 4′‐hydroxy‐2,2′: 6′,2″‐terpyridine and the commercially available 4‐chloromethyl polystyrene. The chelating properties of the new polymer toward the divalent metal ions (Cu2+, Zn2+, Ni2+, and Pb2+) in aqueous solutions was studied by a batch equilibration technique as a function of contact time, pH, mass of resin, and concentration of metal ions. The amount of metal‐ion uptake of the polymer was determined by using atomic absorption spectrometry. Results of the study revealed that the resin exhibited higher capacities and a more pronounced adsorption toward Pb2+ and that the metal‐ion uptake follows the order: Pb2+ > Cu2+ > Zn2+ > Ni2+. The adsorption and binding capacity of the resin toward the various metal ions investigated are discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Chelation efficiency of stimuli‐responsive poly(N‐iospropylacrylamide‐co‐methyacrylic acid) (PNIPAAm‐MAA) nanoparticles with Cu2+ ions from CuSO4·5H2O solution and from wood treated with copper‐based preservatives was studied. It was shown that particle size played a very important role in the adsorption process. The nano‐scale particles showed much improved Cu ion adsorption efficiency, compared with the micro hydrogels. The amount of Cu ion adsorption increased with increase of MAA ratio in copolymers and adsorption efficiency decreased with increased particle size. Furthermore, the adsorption amount varied with adsorption temperature at temperatures both below and above the corresponding low critical solution temperature (LCST). The high adsorption efficiency of Cu ions by PNIPAAm‐MAA polymer particles provides an effective technique for recovering metal ions (e.g., Cu2+) from wood treated with metal‐based preservatives. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
To develop cost effective and eco friendly polymeric materials for enrichment and separation technologies, 1‐vinyl‐2‐pyrrolidone (N‐VP) was graft copolymerized onto cellulose, extracted from pine needles. Optimum conditions have been evaluated for the grafting of N‐VP onto cellulose and at these conditions it was also grafted onto cellulose phosphate, hydroxypropyl cellulose, cyanoethyl cellulose, and deoxyhydrazino cellulose. At the optimum grafting conditions for N‐VP, it was also cografted with maleic anhydride. Kinetics of radiochemical graft copolymerization has been studied and evaluation of the polymerization and grafting parameters as percent grafting, percent grafting efficiency, rate of polymerization, homopolymerization, and graft copolymerization have been evaluated. Graft copolymers have been characterized by elemental analysis, FTIR, and swelling studies. An attempt has been made to study sorption of some metal ions such as Fe2+ and Cu2+ and iodine on select graft copolymers to investigate selectivity in metal ion sorption and iodine sorption as a function of structural aspects of the functionalized graft copolymers to find their end uses in separation and enrichment technologies. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 373–382, 2005  相似文献   

11.
Graft copolymerization of acrylic acid (AA) onto starch was carried out with ceric ammonium nitrate as initiator under nitrogen atmosphere. The grafting percentages (GP%) of starch‐graft‐acrylic acid (St‐g‐AA) copolymers were determined. The effect of GP% of St‐g‐AA copolymers on the competitive removal of Co2+, Ni2+, Zn2+ ions from aqueous solution was investigated at different pH (2, 4, 6). The concentrations of each ion in aqueous solution 5 mmol/L. Effects of various parameters such as treatment time, initial pH of the solution and grafting percentage of starch graft copolymers were investigated. Metal ion removal capacities of St‐g‐AA copolymers increased with GP% of the copolymers and pH. The results show that the removal of metal ions followed as given in the order Co2+ > Ni2+ > Zn2+. In this study, metal ion removal capacities were determined by atomic absorption spectrophotometer (AAS). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

12.
The new macrocyclic polyamine derivatives of chitosan were synthesized by reacting epoxy‐activated macrocyclic tetra‐amine with the C6 hydroxyl or C2 amino group in chitosan. The obtained copolymers (CTS‐OM, CTS‐NM) contain amino functional groups, the secondary amines, and more polar hydroxyl groups in its skeleton. Elemental analysis, infrared spectra, and solid‐state 13C‐NMR analysis confirmed their structures. The adsorption behavior of the macrocyclic polyamine grafted chitosan for Ag+, Pb2+, Hg2+, and Cr3+ was investigated. The experimental results showed that the two novel derivatives of chitosan have high adsorption capacity and good selectivity for some metal ions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 407–412, 2005  相似文献   

13.
Sepharose FF was modified with diethylaminoethyl‐dextran (DEAE‐dextran, DexD) and/or DEAE (D) to fabricate three types of ion exchangers FF‐DexD (grafting‐ligand resin), FF‐D (surface‐ligand resin), and FF‐D‐DexD (mixed‐ligand resin), for protein adsorption equilibria and kinetics study. It was found that both adsorption capacity and uptake rate (effective diffusivity, De) were significantly enhanced by grafting DEAE‐dextran. Notably, the De values on FF‐DexD and FF‐D‐DexD (De/D0 > 1.4) were six times greater than those on FF‐D (De/D0 < 0.3). More importantly, the increase of surface‐ligand density greatly enhanced uptake kinetics on FF‐D‐DexD. The results indicate that the surface ligands assisted the transport of bound proteins on polymer chains in the mixed‐ligand resins. That is, surface ligands worked as “transfer stations” between two neighboring chains, resulting in enhanced transport of bound proteins on chains. The research thus disclosed the unique role of surface ligands in facilitating protein uptake kinetics onto polymer‐grafted ion‐exchangers. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3812–3819, 2016  相似文献   

14.
This study evaluates the suitability of using low‐grade phosphate for Cu2+ removal. The study also investigates the effects of the presence of ethylene‐diamine‐tetra‐acetic acid (EDTA), citric acid, tartaric acid and sodium chloride in a solution containing Cu2+ on the adsorption capacity of Cu2+ onto low‐grade phosphate. For aqueous solutions with 100 ppm Cu2+, the percentage removal of Cu2+ at pH 4 onto 0.2 g of 0.063 mm low‐grade phosphate was found to be 96.6 % after one hour. Using one mmol of either Cu2+, Cu‐NaCl, Cu‐tartaric acid, Cu‐EDTA, or Cu‐citric acid aqueous solutions, the present work shows trend of the percentage removal of Cu2+ at equilibrium time: Cu2+ > Cu‐NaCl > Cu‐tartaric acid > Cu‐EDTA > Cu‐citric acid. It is also found that increasing the concentration of ligand to copper ratio decreases the percentage removal of Cu2+ significantly. This means that the adsorption capacity is ligand type and concentration dependent.  相似文献   

15.
Cellulose derivative (MPCN) modified by 1,5‐diaminoethyl‐3‐hydroxy‐1,5‐diazacycloheptane (DADN) was prepared and characterized by scanning electron microscopy and elemental, and infrared analysis. MPCN and its Cu2+, Pb2+ complexes were characterized by thermogravimetric and differential thermal analysis. The coordination adsorption behavior of MPCN with divalent copper and lead ions was determined. The effects of temperature, initial pH value, and the concentration of MPCN ligand to the equilibrium adsorption were discussed. The optimum pH range of the coordination adsorption of MPCN with Cu2+ and Pb2+ is 5–6. The rate constants of the coordination reaction were found. At 323 K, the rate constant is 1.0 × 10−3 and 7.0 × 10−4 s−1 for Cu2+ and Pb2+, respectively. The thermodynamic parameters of the coordination reaction were obtained based on the experiment data of the adsorption isotherms. The coordination reaction was performed spontaneously from the data of ΔG, as follows: −21.65 and −19.41 kJ/mol and ΔS, 87.06 and 67.92 J/mol K for Cu2+ and Pb2+, respectively. The coordination ratio of DADN coordination group immobilized on cellulose beads with either metal ion is about 1 : 2 from the plot of the relation of lgD versus lgL and the capacity of saturation adsorption. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1278–1285, 1999  相似文献   

16.
Cellulose is an important biomass in natural material fields. Reactive polyhedral oligomeric silsesquioxane (R‐POSS) bearing multi‐N‐methylol groups is novel high reactive POSS monomer. The nano‐cellulose hybrids containing R‐POSS were synthesized by crosslinking reaction. It was interesting to investigate properties and applications of hybrids containing R‐POSS. In this work, nano‐cellulose hybrids as novel biosorbent were used for adsorpting copper and nickel ions in aqueous solution. Adsorption kinetics and equilibrium isotherm of Cu2+ and Ni2+ on the nano‐cellulose hybrids were investigated. The results showed that R‐POSS had been grafted to cellulose macromolecule. The nano‐cellulose hybrids could form new adsorptive position for heavy metal ions. The adsorption capacities of hybrid materials were obviously higher than that of control cellulose. The adsorption of heavy metal ions on nano‐cellulose hybrids followed the second‐order model. The equilibrium isotherms for adsorpting copper and nickel ions on the hybrids followed Langmuir isotherm model. Nano‐cellulose materials containing POSS as biosorbents or ultrafiltration membranes would be used in separation of toxic heavy metal ions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

17.
The aim of this study is to investigate in detail the feasibility of poly(2‐hydroxyethyl methacrylate‐N‐methacryloyl‐(L )‐histidine methyl ester), PHEMAH membranes for purification of immunoglobulin G (IgG) from human plasma. PHEMAH membranes were prepared by photo‐polymerization technique. Then, Zn2+, Ni2+, Co2+, and Cu2+ ions were chelated directly on the PHEMAH membranes. Elemental analysis assay was performed to determine the nitrogen content and polymerized MAH was calculated as 168.5 μmol/g. The nonspecific IgG adsorption onto the plain PHEMA membranes was negligible (about 0.25 mg/mL). A remarkable increase in the IgG adsorption capacities were achieved from human plasma with PHEMAH membranes (up to 68.4 mg/mL). Further increase was observed with the metal‐chelated PHEMAH membranes (up to 118 mg/mL). The metal‐chelate affinity membranes allowed the one‐step separation of IgG from human plasma. The binding range of metal ions for surface histidines from human plasma followed the order: Cu2+ > Ni2+ > Zn2+ > Co2+. Adsorbed IgG was eluted using 250 mM EDTA with a purity of 94.1%. IgG molecules could be repeatedly adsorbed and eluted with the metal‐chelated PHEMAH membranes without noticeable loss in their IgG adsorption capacity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Novel polyaspartamide copolymers containing histamine pendants (PHEA‐HIS) were prepared from polysuccinimide, which is the thermal polycondensation product of aspartic acid, via a successive ring‐opening reaction using histamine (HIS) and ethanolamine (EA). The prepared water‐soluble copolymer was then crosslinked by reacting it with hexamethylene diisocyanate in order to provide a hydrogel with both good gel strength and reversible CO2 absorption characteristics. PHEA‐HIS gel is also pH‐sensitive and eligible to coordinate to metal ions such as Pb2+, Cu2+, and Ni2+ due to the imidazole units in its structure. The CO2‐responsive swelling behavior, metal‐ion adsorption, and morphology of the crosslinked gels were investigated. The approach described here results is a promising hydrogel with potential for a variety of industrial and biomedical applications including CO2 capture, CO2‐responsive and switchable sensors, and smart drug delivery systems. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43305.  相似文献   

19.
Metal complexes of copolymers based on polyacrylic acid radiation grafted onto films of low density polyethene were prepared by complex‐forming with solutions of salts of FeCl3.6H2O, CuCl2.2H2O, CoCl2.6H2O, NiCl2.6H2O, VOSO4.5H2O, Na2MoO4.2H2O, Na2WO4.2H2O, and NH4VO3. The introduction of metal ions was found to depend mainly on the degree of grafting of acrylic acid and was from 0.5 to 5.0 mass%. These complexes were characterized by IR, UV spectroscopy, and EPR. The moisture content of the materials obtained changed linearly with the degree of grafting of acrylic acid and was from 9.0 to 80.0%. The introduction of the MoO22+ and WO22+ towards carboxylic groups lead to increasing the thermal stability of the metal complexes of the copolymers compared to the initial grafted films. The modified acrylate copolymers were studied in reactions of catalytic oxidation of cyclohexene. The activities of the complexes obtained towards cyclohexene epoxidation can be arranged in the following order: PAA–MoO22+ > PAA–VO2+ > PAA–VO > PAA–WO22+, while for the reaction of cyclohexene hydroxylation the order was—PAA–Co2+ > PAA–Cu2+ > PAA–Fe3+ > PAA–Ni2+. The contents of cyclohexene oxide and 2‐cyclohexene‐1‐ol reached 38.5% and 7.5%, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1658–1665, 2006  相似文献   

20.
We modified microporous polyamide hollow fibers by acid hydrolysis to amplify the reactive groups and subsequent binding of Cibacron Blue F3GA. Then, we loaded the Cibacron Blue F3GA‐attached hollow fibers with different metal ions (Cu2+, Ni2+, and Co2+) to form the metal chelates. We characterized the hollow fibers by scanning electron microscopy. The effect of pH and initial concentration of human serum albumin (HSA) on the adsorption of HSA to the metal‐chelated hollow fibers were examined in a batch system. Dye‐ and metal‐chelated hollow fibers had a higher HSA adsorption capacity and showed less nonspecific protein adsorption. The nonspecific adsorption of HSA onto the polyamide hollow fibers was 6.0 mg/g. Cibacron Blue F3GA immobilization onto the hollow fibers increased HSA adsorption up to 147 mg/g. Metal‐chelated hollow fibers showed further increases in the adsorption capacity. The maximum adsorption capacities of Co2+‐, Cu2+‐, and Ni2+‐chelated hollow fibers were 195, 226, and 289 mg/g, respectively. The recognition range of metal ions for HSA from human serum followed the order: Ni(II) > Cu(II) > Co(II). A higher HSA adsorption was observed from human serum (324 mg/g). A significant amount of the adsorbed HSA (up to 99%) was eluted for 1 h in the elution medium containing 1.0M sodium thiocyanide (NaSCN) at pH 8.0 and 25 mM ethylenediaminetetraacetic acid at pH 4.9. Repeated adsorption–desorption processes showed that these metal‐chelated polyamide hollow fibers were suitable for HSA adsorption. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3346–3354, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号