首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the potential of the common dye Congo red as a fluorescence marker for chitin in the exoskeleton of small crustaceans and collagen in the polychaete cuticle was tested. The Congo red staining turned out to be rather efficient and yielded intensively fluorescing structures, which made a very detailed visualization by confocal laser scanning microscopy possible. The excellent results are comparable to those described for the utilization of other efficient fluorescence dyes and intense autofluorescence. The application of Congo red is easy, the fluorescence of this dye is very stable, and the excitation maximum of the structures stained with Congo red is in a range, which is covered by the lasers of most of the confocal laser scanning microscopes. These advantageous properties make the fluorescence staining by Congo red a method of choice for the detailed visualization of the external morphology of small crustaceans and polychaetes.  相似文献   

2.
Biofilms are an important element of the natural ecosystems but can be detrimental in health care and industrial settings. To improve our ability to combat biofilms, we need to understand the processes that facilitate their formation and dispersal. One approach that has proven to be invaluable is to image biofilms as they grow. Here we describe tools and protocols to visualize biofilms with multiphoton laser scanning microscopy, compare this with single photon laser scanning confocal microscopy and highlight best working procedures. Furthermore, we describe how with multiphoton laser scanning microscopy the laser can be used to manipulate the biofilm, specifically to achieve localized bleaching, killing or ablation within the biofilm biomass. These applications open novel ways to study the dynamics of biofilm formation, regeneration and dispersal.  相似文献   

3.
Cuticular structures of insects are often microscopic and intricately complex; among the most complex structures are male genitalia. Genitalic structures are essential in taxonomic and phylogenetic studies of insects. Using well‐described species from two disparate dipteran genera, we demonstrate the utility of confocal laser scanning microscopy for studying the morphological characters of fly genitalia by taking advantage of the autofluorescent properties of cuticle material. Reconstructions of confocal data sets obtained from genitalic structures embedded in two commonly used entomological mounting media (euparal and glycerin jelly) are presented. Aberration artefacts often observed in confocal data obtained from thick specimens were analysed and strategies for their minimization are discussed. Our results indicate that confocal laser scanning microscopy and 3D reconstruction are excellent techniques for visualizing small, complex, autofluorescent structures in flies. These techniques could have a profound impact on the quality of information provided by 3D representations of insect structures over more traditional methods of visualization.  相似文献   

4.
We wished to exploit confocal microscopy for high spatial and temporal resolution vital microscopy in bone. To this end, we evolved implants with glass windows supported in titanium, which were placed in the medial proximal tibial plateau of the rabbit, and special small, self-focussing objectives (dry 10/0.25, water immersion 20/0.45, and oil immersion 45/0.65 and 120/1.0) which mated and matched to the conical window entrance section of the metal components. At intervals of up to 21 months after implant healing, these lenses were used to study live tissue using two genera of confocal microscope: multiple aperture disc, tandem scanning, microscopes for observation in reflection, and video rate confocal laser scanning microscopes for recording, mainly in the fluorescence mode. The latter allowed the study of a variety of intravenously administered substances, including fluorescein, fluorescein-dextrans, fluorescent microspheres, acridine orange, DASPMI, calcein, and tetracycline. We were able to remove blood, stain cells with fluorescent markers, and replace them into the circulation. Calcein and tetracycline bind to the mineral front in bone: this labelling was studied in progress. We observed that both substances partition and remain for long periods (at least days) in adipocytes. Further characterisation of the system used both confocal fluorescence and scanning electron microscopy methods in the study of retrieved implants. These studies showed that the subimplant cortical bone remodelled to a less compact structure with a rich microvasculature extremely close to bone. The points of attachment of bone to glass were found to involve coarse fibres, with the matrix containing large numbers of large cells: some of this tissue was cartilage and some immature bone. An amorphous, mineralised matrix was in immediate contact with glass. The results provide further confirmation of the general utility of high-scan speed confocal methodology in physiology.  相似文献   

5.
In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV‐pulsed mature human dendritic cells.  相似文献   

6.
The field of biological microscopy has recently enjoyed major technical advances, exemplified by the development of field-emission low-voltage scanning electron microscopes and laser scanning confocal light microscopes. In addition, computer processing of microscopical data is revolutionizing the way morphological information is imaged. In this paper, we illustrate methods by which this new technology can be used to examine events in fertilization and early development in three dimensions. Different types of specimen preparation protocols, using both echinoderm and mammalian gametes and embryos, are evaluated for their ability to preserve accurately the threedimensional organization of these specimens for imaging by both low-voltage scanning electron microscopy and laser scanning confocal light microscopy.  相似文献   

7.
Apoptotic micronuclei have been studied, in different cell types, from a morphologic and functional point of view. Conventional electron microscopy, in various staining conditions, selective cytochemistry for DNA, and freeze fracture for the analysis of chromatin fiber organization and size were performed. In situ TdT and Pol I immunofluorescent techniques were carried out to detect double- and single-strand DNA breaking points by confocal laser scanning microscopy. Apoptotic cell ultrathin cryosections were also performed and were analysed by field emission in lens scanning electron microscopy. Double/single strand massively cleaved DNA was detected in micronuclei, with a highly supercoiled, uniformly packed, very dense arrangement.  相似文献   

8.
Bacterial biofilms play key roles in environmental and biomedical processes, and understanding their activities requires comprehension of their nanoarchitectural characteristics. Electron microscopy (EM) is an essential tool for nanostructural analysis, but conventional EM methods are limited in that they either provide topographical information alone, or are suitable for imaging only relatively thin (<300 nm) sample volumes. For biofilm investigations, these are significant restrictions. Understanding structural relations between cells requires imaging of a sample volume sufficiently large to encompass multiple cells and the capture of both external and internal details of cell structure. An emerging EM technique with such capabilities is bright‐field scanning transmission electron microscopy (BF‐STEM) and in the present report BF‐STEM was coupled with tomography to elucidate nanostructure in biofilms formed by the polycyclic aromatic hydrocarbon‐degrading soil bacterium, Delftia acidovorans Cs1‐4. Dual‐axis BF‐STEM enabled high‐resolution 3‐D tomographic recontructions (6–10 nm) visualization of thick (1250 and 1500 nm) sections. The 3‐D data revealed that novel extracellular structures, termed nanopods, were polymorphic and formed complex networks within cell clusters. BF‐STEM tomography enabled visualization of conduits formed by nanopods that could enable intercellular movement of outer membrane vesicles, and thereby enable direct communication between cells. This report is the first to document application of dual‐axis BF‐STEM tomography to obtain high‐resolution 3‐D images of novel nanostructures in bacterial biofilms. Future work with dual‐axis BF‐STEM tomography combined with correlative light electron microscopy may provide deeper insights into physiological functions associated with nanopods as well as other nanostructures.  相似文献   

9.
The implementation of spherical aberration-corrected pre- and post-specimen lenses in the same instrument has facilitated the creation of sub-Angstrom electron probes and has made aberration-corrected scanning confocal electron microscopy (SCEM) possible. Further to the discussion of elastic SCEM imaging in our previous paper, we show that by performing a 3D raster scan through a crystalline sample using inelastic SCEM imaging it will be possible to determine the location of isolated impurity atoms embedded within a bulk matrix. In particular, the use of electron energy loss spectroscopy based on inner-shell ionization to uniquely identify these atoms is explored. Comparisons with scanning transmission electron microscopy (STEM) are made showing that SCEM will improve both the lateral and depth resolution relative to STEM. In particular, the expected poor resolution of STEM depth sectioning for extended objects is overcome in the SCEM geometry.  相似文献   

10.
激光扫描共聚焦显微镜技术的发展及应用   总被引:9,自引:1,他引:8  
激光扫描共聚焦显微术是先进的分子和细胞生物学研究技术。它在荧光显微镜成像的基础上加装激光扫描装置,结合数据化图像处理技术,采集组织和细胞内荧光标记图像。在亚细胞水平观察钙等离子水平的变化,并结合电生理等技术观察细胞生理活动与细胞形态及运动变化的相互关系。由于它的应用范围较广泛,已成为形态学、分子细胞生物学、神经科学和药理学等研究领域中很重要的研究技术。  相似文献   

11.
Three batches of the commercial energetic material RDX, as received from various production locations and differing in sensitivity towards shock initiation, have been characterized with different microscopic techniques in order to visualize the defect content in these crystals. The RDX crystals are embedded in an epoxy matrix and cross‐sectioned. By a treatment of grinding and polishing of the crystals, the internal defect structure of a multitude of energetic crystals can be visualized using optical microscopy, scanning electron microscopy and confocal scanning laser microscopy. Earlier optical micrographs of the same crystals immersed in a refractive index matched liquid could visualize internal defects, only not in the required detail. The combination of different microscopic techniques allows for a better characterization of the internal defects, down to inclusions of approximately 0.5 μm in size. The defect structure can be correlated to the sensitivity towards a high‐amplitude shock wave of the RDX crystals embedded in a polymer bonded explosive. The obtained experimental results comprise details on the size, type and quantity of the defects. These details should provide modellers with relevant and realistic information for modelling defects in energetic materials and their effect on the initiation and propagation of shock waves in PBX formulations.  相似文献   

12.
Laser scanning confocal microscopes are essential and ubiquitous tools in the biological, biochemical and biomedical sciences, and play a similar role to scanning electron microscopes in materials science. However, modern laser scanning confocal microscopes have a number of advantages for the study of materials, in addition to their obvious uses for high resolution reflected and transmitted light optical microscopy. In this paper, we provide several examples that exploit the laser scanning confocal microscope's capabilities of pseudo-infinite depth of field imaging, topographic imaging, photo-stimulated luminescence imaging and Raman spectroscopic imaging.  相似文献   

13.
A novel arrangement for confocal microscopy is presented, in which the key elements are the use of an array detector such as a CCD for confocal image collection and the use of one double-sided scanning mirror element for bilaterally scanning the object and collecting the data on the CCD. The resulting arrangement is shown to be capable of confocal imaging with high photon efficiency under adjustable conditions of confocality and varying image acquisition rates, i.e. from slow speed up to real-time imaging. Either laser or conventional light sources may be utilized. In addition to CCD registration, direct observation by eye of the confocal image in fluorescence is also possible.  相似文献   

14.
在激光扫描共聚焦显微成像技术基础上引入了光谱成像技术以便区分生物组织中的不同荧光成分。采用分光棱镜对荧光进行光谱展开,在光谱谱面处设置两个可移动缝片形成出射狭缝,两个步进电机带动安装其上的两个缝片设置系统在整个工作波长(400~700 nm)内的光谱带宽,其最小光谱带宽优于5 nm。用488 nm激光和低压汞灯实际测量了几条谱线对应的狭缝位置并和理论值做了比较,结果显示实际狭缝位置和理论值的差值均小于0.1 mm。在全光谱和50 μm出射狭缝(对应2.5 nm光谱带宽)对老鼠肾脏组织进行了共聚焦光谱成像实验,获得了老鼠肾脏组织中DAPI标定的细胞核图像和Alexa Fluor®488标定的肾脏小球曲管图像,实现了对老鼠肾脏组织不同成分的区分。实验结果表明:提出的系统能够进行共聚焦光谱成像,扩大了共聚焦显微镜的适用范围。  相似文献   

15.
A method for reflectance in situ hybridization (RISH) is presented. The importance of the method is demonstrated by results obtained on cytological and histological breast cancer specimens. Scattering reflectance signals from 1-nm colloidal-gold particles after RNA/RNA in situ hybridization, using digoxigenin-labelled riboprobes, were detected by confocal scanning laser microscopy. The mRNA expression of two ras-related genes, rho B and rho C, was analysed in human histological breast cancer specimens and in human breast cancer cell lines. Horizontal (x, y) and vertical (z) optical sections after three-dimensional imaging were used for visualization. A marked heterogeneity (between individual cells and between specimens) was noted for the expression of the rho B gene, both in cytological and in histological samples. On the other hand, rho C was always expressed and showed no heterogeneity. This method allows the identification of several cellular constituents in an heterogeneous tissue structure, as demonstrated by the simultaneous detection of rho B (or rho C) by reflectance and of DNA, cytokeratin and/or vimentin by fluorescence.  相似文献   

16.
Characterization of the nature and distribution of organic components is crucial to understand shell formation in marine invertebrates. Although several techniques can provide detailed information at high spatial resolution, few of them are non-destructive and informative in a larger structural context. We explore the use of confocal laser scanning microscopy (CLSM) to obtain a better understanding of the distribution of organic components in calcitic shells of brachiopods focusing on perforations (punctae) across the shell. Resulting intensities and patterns of fluorescence correspond well with the distribution of polysaccharides and proteins as reported in previous histological and biochemical studies. Confocal laser microscopy is, therefore, a useful tool to be combined with other techniques to improve our knowledge of biomineral structures in marine invertebrates.  相似文献   

17.
Collagen fibrillation within articular cartilage (AC) plays a key role in joint osteoarthritis (OA) progression and, therefore, studying collagen synthesis changes could be an indicator for use in the assessment of OA. Various staining techniques have been developed and used to determine the collagen network transformation under microscopy. However, because collagen and proteoglycan coexist and have the same index of refraction, conventional methods for specific visualization of collagen tissue is difficult. This study aimed to develop an advanced staining technique to distinguish collagen from proteoglycan and to determine its evolution in relation to OA progression using optical and laser scanning confocal microscopy (LSCM). A number of AC samples were obtained from sheep joints, including both healthy and abnormal joints with OA grades 1 to 3. The samples were stained using two different trichrome methods and immunohistochemistry (IHC) to stain both colourimetrically and with fluorescence. Using optical microscopy and LSCM, the present authors demonstrated that the IHC technique stains collagens only, allowing the collagen network to be separated and directly investigated. Fluorescently-stained IHC samples were also subjected to LSCM to obtain three-dimensional images of the collagen fibres. Changes in the collagen fibres were then correlated with the grade of OA in tissue. This study is the first to successfully utilize the IHC staining technique in conjunction with laser scanning confocal microscopy. This is a valuable tool for assessing changes to articular cartilage in OA.  相似文献   

18.
The rocks of the McMurdo Dry Valleys desert in Antarctica harbour endolithic communities of micro‐organisms such as lichens, fungi, cyanobacteria and bacteria. Establishing the physiological status and viability of these microbial colonies in their natural microhabitat has far‐reaching implications for understanding the microbial ecology of the harsh environment of this polar desert. Here we describe the use of confocal microscopy and a specific fluorescent probe (FUN‐1) to evaluate the metabolic activity of fungal cells. Application of confocal microscopy also served to identify living and dead bacteria or cyanobacteria using the fluorescent assay reagents Live/Dead SYTO 9 and propidium iodide or SYTOX Green, respectively. In addition, through the use of epifluorescence microscopy, live/dead bacteria and cyanobacteria could be detected by estimating fluorescence from their cell components provoked by simultaneously staining with nucleic acids stains such as DAPI and SYTOX Green.  相似文献   

19.
Aspects of ionoregulatory or mitochondria‐rich cell (MRC) differentiation and adaptation in Nile tilapia yolk‐sac larvae following transfer from freshwater to elevated salinities, that is, 12.5 and 20 ppt are described. Investigations using immunohistochemistry on whole‐mount Nile tilapia larvae using anti‐ Na+/K+‐ATPase as a primary antibody and Fluoronanogold? (Nanoprobes) as a secondary immunoprobe allowed fluorescent labeling with the high resolution of confocal scanning laser microscopy combined with the detection of immunolabeled target molecules at an ultrastructural level using transmission electron microscopy (TEM). It reports, for the first time, various developmental stages of MRCs within the epithelial layer of the tail of yolk‐sac larvae, corresponding to immature, developing, and mature MRCs, identifiable by their own characteristic ultrastructure and form. Following transfer to hyperosmotic salinities the density of immunogold particles and well as the intricacy of the tubular system appeared to increase. In addition, complementary confocal scanning laser microscopy allowed identification of immunopositive ramifying extensions that appeared to emanate from the basolateral portion of the cell that appeared to be correlated with the localization of subsurface tubular areas displaying immunogold labeled Na+/K+‐ATPase. This integrated approach describes a reliable and repeatable prefixation immunogold labeling technique allowing precise visualization of NaK within target cells combined with a 3D imaging that offers valuable insights into MRC dynamics at an ultrastructural level. Microsc. Res. Tech., 76:1016–1024, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
We have employed field-emission secondary electron microscopy (FESEM) for morphological evaluation of freeze-fractured frozen-hydrated renal epithelial LLC-PK1 cells prepared with our simple cryogenic sandwich-fracture method that does not require any high-vacuum freeze-fracture instrumentation (Chandra et al. (1986) J. Microsc. 144 , 15–37). The cells fractured on the substrate side of the sandwich were matched one-to-one with their corresponding complementary fractured faces on the other side of the sandwich. The FESEM analysis of the frozen-hydrated cells revealed three types of fracture: (i) apical membrane fracture that produces groups of cells together on the substrate fractured at the ectoplasmic face of the plasma membrane; (ii) basal membrane fracture that produces basal plasma membrane-halves on the substrate; and (iii) cross-fracture that passes randomly through the cells. The ectoplasmic face (E-face) and protoplasmic face (P-face) of the membrane were recognized based on the density of intramembranous particles. Feasibility of fractured cells was shown for intracellular ion localization with ion microscopy, and fluorescence imaging with laser scanning confocal microscopy. Ion microscopy imaging of freeze-dried cells fractured at the apical membrane revealed well-preserved intracellular ionic composition of even the most diffusible ions (total concentrations of K+, Na+ and Ca+). Structurally damaged cells revealed lower K+ and higher Na+ and Ca+ contents than in well-preserved cells. Frozen-freeze-dried cells also allowed imaging of fluorescently labelled mitochondria with a laser scanning confocal microscope. Since these cells are prepared without washing away the nutrient medium or using any chemical pretreatment to affect their native chemical and structural makeup, the characterization of fracture faces introduces ideal sample types for chemical and morphological studies with ion and electron microscopes and other techniques such as laser scanning confocal microscopy, atomic force microscopy and near-field scanning optical microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号