首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
祁玉童 《石油机械》2008,36(3):74-76
随着油气开采向着深部地层及深海方向发展,石油开采向岩性油藏转移,钻遇窄钻井液密度窗口的情况越来越普遍。合理控制循环当量密度(ECD)是解决窄钻井液密度窗口的安全以及快速钻井的关键。分析对比了传统的ECD控制方式及控制ECD的新方法。结果表明,传统的ECD控制方式中,停止循环时采用静止钻井液压力平衡地层压力,而在循环时产生的环空摩擦压耗依然会使井底压力大于地层孔隙压力。CCS及DAPC系统均采用静止状态下低于孔隙压力的静止钻井液密度,在起下钻或连接钻杆时通过不间断循环或提供地面回压,保持井底压力稳定。而ECD RT则通过工具降低窄密度窗口地层的局部压力,实现在复杂地层的快速、安全钻进,从而减少钻井非生产时间,降低钻井成本,提高钻井经济效益。  相似文献   

2.
利用随钻压力数据提高储层钻井性能   总被引:1,自引:0,他引:1  
最近,在挪威海上斯塔福约得油田储层段钻进时应用了一种新型环空随钻压力测试工具。大位移井钻井成功的关键是要把泥浆比重和当量循环密度保护在安全作业范围之内,这二者的大小是由地层流体,坍塌和破裂压力所限定的。过去由于上述参数超出安全限度曾引起损失惨重的泥浆漏失,压差卡钻和埋钻具事故。  相似文献   

3.
精细控压钻井井底压力自动控制技术初探   总被引:1,自引:0,他引:1  
控压钻井技术是当前油气钻井工程领域的前沿技术之一。钻井各个工况的井底压力须保持恒定,才能确保窄密度窗口复杂地层井段的安全、顺利钻进。为此,通过分析前人对各个工况井底压力计算的研究成果,提出了精细控压钻井井底压力计算模型,该模型的环空循环压耗计算包含了多相流动的重力压降、摩阻压降和加速度压降梯度。在塔里木盆地实施了1口井的精细控压钻井作业,用停泵工况由地面回压泵施加的回压值与计算值比较,最大误差为0.30 MPa,能满足工程实际需要,为今后精细控压钻井井底压力精确计算与控制提供了理论支撑。  相似文献   

4.
降低当量循环密度工具(ECDRT)可以解决由于摩阻损失引起的环空流体压力的增加,还可以通过降低流体静压头总和解决岩屑载荷问题.该工具在钻井方面有广泛的应用,包括深水区域狭窄的孔隙/破裂压力范围和对套管安装深度的影响;不稳定井眼;压力衰竭油气藏和延伸井.ECDRT样机最近在美国陆地基准站进行了测试.现场试验的目的是:①确定当量循环密度降低程度;②确立现场条件下的可靠性;③评定ECDRT的操作程序.钻222.25 mm井眼,将ECDRT下入到244.48 mm套管内,在1371.6 m深度进行完井作业.地面和井底测试提供连续的实时显示,监测工具性能.现场试验证明ECDRT可以控制井底压力.该工具可减少10.2 MPa的井底压力,等效于在1371.6 m处减少了大约0.1 g/cm3的当量循环密度.使用该工具没有降低钻井性能.整个钻井作业过程中返回的钻井泥浆和井眼清洁程度正常.该工具在处理30.48 m/h钻速时产生的岩屑没有任何问题.井后分析表明,在确保工具寿命和性能稳定性方面,设计仍存在一些问题.但是已经证明在实际钻进条件下该工具可以控制环空压力.  相似文献   

5.
考虑温度效应的高温高压直井井壁稳定性规律   总被引:1,自引:0,他引:1  
海外A区块探井的高温高压井段因频繁发生井漏、卡钻等井下复杂情况,井壁不稳定,导致原井眼报废。根据经典的坍塌压力和破裂压力计算模型,钻井液安全密度窗口为0.2 g/cm3,但实际作业过程中发现在高温高压井段安全密度窗口更窄。由于温度变化产生的温变应力会对井壁稳定性造成影响,因此考虑井壁温度效应,探索了温度变化对高温高压直井井壁稳定性的影响。通过分析井壁附加温变应力场,建立了考虑温度效应的坍塌压力和破裂压力计算模型,发现了温度变化对井壁稳定性的影响规律。低温钻井液在高温地层循环产生的附加温变应力,使地层坍塌压力和破裂压力减小。该方法为该区块后续生产井的顺利实施提供了技术支撑,相比探井,钻井周期大幅缩短。考虑温度效应的地层坍塌压力和破裂压力计算模型,对今后窄安全密度窗口高温高压直井的井壁稳定性研究具有参考价值。  相似文献   

6.
南海流花超大位移井井身结构设计方法   总被引:1,自引:0,他引:1  
超大位移井井身结构复杂,为合理设计其井身结构,从垂直井井身结构设计的压力平衡原理出发,针对大斜度井段垂深变化小且裸眼井段很长、大斜度裸眼井段最容易在测深最大处被压裂的特点,通过计算钻井液的当量循环密度,研究了超大位移井大斜度裸眼井段的地层压力、破裂压力和环空压耗之间的关系,得出套管最大下深及允许最大环空压耗的计算公式。研究结果表明,在一定的地质条件下,超大位移井井身结构设计的重要可控因素是环空压耗。采用文中推导的公式分析一个超大位移井井身结构设计及当量循环密度监控的案例,验证了该公式的正确性,为大位移井的井身结构设计提供了理论依据。  相似文献   

7.
深水动态压井钻井井筒压力模拟   总被引:4,自引:0,他引:4  
动态压井钻井技术可有效解决深水表层钻井过程中出现的溢流或井漏、井塌等井下复杂事故。为研究深水表层动态压井钻井过程中的压力变化特征,结合动态压井钻井基本原理,建立了动态压井钻井井筒物理模型,通过设定海水和加重钻井液的初始排量、排量随时间的变化率,推导出了变排量、变密度模式下的动态压井钻井井筒压力数学模型。根据墨西哥湾深水钻井实例数据,计算分析了动态压井钻井过程中环空密度、环空压力、环空压耗以及井底压力随时间的变化关系。结果表明,动态压井钻井技术的关键在于通过实时调整海水排量、加重钻井液排量控制混浆密度,进而控制环空液柱压力,达到深水表层安全钻井的目的;机械钻速是影响井底压力的重要因素,机械钻速越大,由岩屑产生的附加密度越大,井底压力越大。  相似文献   

8.
考虑钻井液渗滤造成井壁岩石孔隙压力变化和钻井液与地层岩石温差产生的附加应力和应变,推导了孔隙度与孔隙压力和温差的理论关系,建立了考虑孔隙压力、温差及孔隙度变化的深井安全钻井液密度窗口计算模型。应用模型计算结果表明:①深井钻井井壁岩石与钻井液温差一定时,随着钻井液渗滤作用的增强,井壁岩石孔隙压力增加,导致坍塌压力增大,破裂压力减小,安全钻井液密度窗口变小,不利于安全钻井。②当井壁岩石孔隙压力一定时,若钻井液使井壁岩石降温,则随着温差的增加,坍塌压力减小,破裂压力增加,安全钻井液密度窗口范围变大,有利于安全钻井;若钻井液使井壁岩石升温,则随着温差的增大,坍塌压力增大,破裂压力减小,安全钻井液密度窗口变小,不利于安全钻井。  相似文献   

9.
面对日益复杂的地质条件和钻井技术的革新要求,井底当量循环密度计算的重要性越来越引起钻井工作者的重视。一般而言,当量循环密度等于当量静态密度与环空压耗的当量密度之和。将循环过程附加的环空压耗折算成相当的密度值,则为环空附加当量循环密度,其计算与监测对于大位移井、深水井或超深井的控压钻井尤为重要。文中通过优选钻井液流变模式选取幂律模式作为实际钻井液的流变模式,对不同尺寸的管柱采取分段求和的处理方法计算钻井液循环压耗,并运用环空水力模型和U型管原理这2种方法计算环空附加当量循环密度,最后结合具体实例进行了计算。研究结果表明,环空附加当量循环密度的计算结果能够满足工程设计的计算要求。  相似文献   

10.
水平井是碳酸盐岩储层的有效方式,但是过低的漏失压力是限制碳酸盐储层水平段延伸极限的最主要因素。根据控压钻井工艺方法,文章建立了碳酸岩储层控压水平井水平段水力延伸极限的计算模型,确定了控压钻井方式下最优的钻井液密度,且根据流体力学理论,分别对环空非水平段循环压耗和水平段环空压耗进行计算,进而求出了水平井水平段的水力延伸极限。最后通过实例验证,与常规钻井相比得出控压钻水平井可有效延长水平段的延伸极限,并分析了排量、安全密度窗口度、岩屑床高度和井口回压对水平井水平段水力延伸极限的影响,为在裂缝性储层中开展控压钻水平井作业提供技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号