首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 953 毫秒
1.
武胡  刘冬梅  杨翔  孟煦 《微电子学》2022,52(5):816-823
设计了一种带自适应斜坡补偿的峰值电流模式(PCM)控制Boost变换器。采用一种低功耗自适应斜坡补偿电路,使得升压(Boost)变换器能够实现宽输出范围和高带载能力。在此基础上,提出了一种应用于Boost变换器的电感电流采样电路,该电路实现了高采样速度和高采样精度,且具备全周期的电感电流采样特点。变换器基于SMIC 180 nm BCD CMOS工艺设计。仿真结果表明,该带自适应斜坡补偿的PCM控制Boost变换器输入电压转换范围为2.8 V~5.5 V,输出电压转换范围为4.96 V~36.1 V,最大输出负载电流高达5 A。  相似文献   

2.
王晨阳  罗萍  周先立  王浩 《微电子学》2020,50(6):794-798
为了提高瞬态响应速度,提出了一种用于峰值电流模PWM控制Boost变换器的瞬态响应优化电路。传统峰值电流模Boost变换器的带宽因受限于右半平面零点而限制了负载阶跃时的瞬态响应速度。该优化电路根据输出电压信号来输出自适应瞬态增强电流信号,优化了变换器的瞬态响应特性。采用0.18 μm BCD工艺对电路进行仿真验证。结果表明,负载电流从1 A变化到200 mA时,负载阶跃恢复时间从65 μs减小到50 μs;负载电流从200 mA变化到1 A时,负载阶跃恢复时间从46 μs减小到33 μs。  相似文献   

3.
习璐  陈文奎  金金 《无线互联科技》2013,(12):120-120,179
PFC Boost电路中由于输入电压的时变性造成输入电流在过零附近产生分岔现象,本文针对该现象,以电流连续模式(CCM)下峰值电流型PFC Boost变换器的精确时变模型为基础,研究了抑制分岔的斜坡补偿方法,通过SIMULINK仿真验证,表明输入电流分岔现象得到消除,接近输入电压波形,改善了PFC Boost变换器的性能。  相似文献   

4.
提出了一种峰值电流模式PWM下的轻载高效Buck DC-DC控制方案。该方案根据负载大小来自适应调节开关频率和电感电流峰值,实现宽负载范围内高的转换效率和对输出纹波的控制。把误差信号与负载自适应的门限相比较,以判定转换器工作模式。在轻载模式下,通过循环开启或者关闭振荡器来降低转换器的开关频率,降低开关损耗。详细推导了在保持输出电压纹波不变的情况下,负载自适应门限与负载大小之间的关系,并在典型应用下得到二者呈线性关系的结论。采用0.5μm BCD工艺进行仿真,结果显示,在输入电压12 V,输出电压3.3 V下,轻载时最高有94.2%的转换效率,在负载从10 mA到500 mA变化时,轻载模式纹波为120~140 mV,与理论分析的控制纹波130 mV较为符合。  相似文献   

5.
本文提出了一种双模式调制技术,以提高宽负载范围内降压型DC-DC转换器的转换效率。采用自适应导通时间电路(AOT)和斜坡信号VRAMP产生电路来维持转换器连续导通时间(CCM)工作模式下开关频率基本稳定;利用过零检测电路来检测电感电流,当电感电流过零时,能及时关断续流管,降低开关损耗,进一步提升轻载转换效率。该DC-DC基于SMIC 0.18 um BCD工艺进行电路仿真验证,该电路可在0~3A宽负载范围内正常工作,在输入电压3~5V范围内,PFM模式下输出电压纹波小于5.2mV,1m A负载下转换效率为87.37%。在PWM模式下输出电压纹波小于2.8mV,3A负载下最低转换效率为84.24%。峰值效率可达94.91%,全负载范围内转换效率大于84%。  相似文献   

6.
针对滞环恒流大功率LED驱动芯片,提出一款高性能电流采样电路。该电路采用高压工艺,可承受最高达40 V的输入电压。通过分析滞环控制的特点,采用串联电阻采样技术,结合匹配电流源结构,在保证响应速度和采样精度的同时,降低了电路的复杂度。电路中加入输入电压补偿电路,进一步提高了恒流控制的精度。在Cadence下的仿真结果表明,电路可在800 kHz的频率下正常工作,采样精度达99.78%;当电压从15 V变化至35 V时平均负载电流误差为0.81%;输出电压范围为0~5 V。  相似文献   

7.
张昱  叶益迭  潘春彪 《微电子学》2022,52(5):772-776
设计了一种适用于峰值电流模式Boost电路的自适应斜坡补偿电路。电路通过动态检测Boost电路的输入输出电压,产生随Boost电路开关控制信号占空比变化的斜坡电压,实现补偿斜坡斜率的最优化。由于本设计采用了高精度减法器,斜坡补偿精度得到提高,在消除次谐波振荡、提升Boost电路稳定性的同时,将补偿对Boost电路的负面影响最小化,保证了Boost电路的带载能力和动态响应速度。采用SMIC 0.18μm CMOS工艺完成电路设计和版图绘制,并进行了后仿验证,结果显示,工作电压为3.3 V时,在不同工作条件下,随着开关占空比的变化,补偿斜率可以实现自适应调整,与理论最佳补偿斜率的误差范围仅为1.39%~2.33%。  相似文献   

8.
文章设计了一种电流模式脉宽调制直流-直流同步降压转换电路,输入电压可达40V,输出电流可达2A,开关频率350kHz。电路运用片上电流采样,结合分段斜率补偿,该峰值电流模式脉宽调制控制,获得了相当好的线性和负载调整率,以及较快的负载动态响应速度。在整个负载电流范围内(200mA~2A)内其具有高转换效率。  相似文献   

9.
高升压比交错并联Boost电路的分析   总被引:2,自引:0,他引:2  
文章分析了传统Boost电路在实际应用中存在的问题,提出了一种改进型的交错并联Boost电路。在电感电流连续模式下,根据占空比大于或小于0.5的情况,详细分析电路的工作过程,推导了稳态情况下输出输入电压关系式,最后通过仿真验证了理论分析的正确性。  相似文献   

10.
王巍  童涛  赵汝法  吴浩  郭家成  丁辉  夏旭  袁军 《微电子学》2023,53(4):647-653
在降压转换器中,为了在不同的负载情况下获得高效率,常采用的方法是在重载时使用脉冲宽度调制(PWM),在轻载时使用脉冲频率调制(PFM),因此需要模式切换信号去控制整个降压转换器的工作状态,同时模式切换信号也可以用于自适应改变功率级电路中的功率管栅宽,减小功率管的栅极电容,提高整体电路的效率。文章设计了一个自适应峰值电流模式切换电路,用于产生模式切换信号,其原理是监控峰值电流的变化,产生峰值电压,将峰值电压与参考电压进行比较,得到模式切换信号,以决定降压转换器是采用PFM模式还是PWM模式。仿真结果表明,在负载电流0.5~500 mA范围内,该电路可以在两种调制模式之间平稳切换,其峰值效率可提升到94%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号