首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
采用等体积浸渍法和湿混法制备NiO/ZnO-SiO2-Al2O3吸附剂前体,经还原得到Ni/ZnO-SiO2-Al2O3吸附剂。利用XRD和压汞法对其晶体结构进行表征,采用固定床吸附实验评价吸附剂对加氢汽油的吸附脱硫性能。结果表明,与等体积浸渍法制备的吸附剂前体相比,湿混法制备的吸附剂前体的比表面积大,孔体积相当,还原后所得吸附剂的脱硫活性好。以山东恒源石化公司的加氢汽油为原料,在吸附温度350 ℃、压力2.0 MPa、进料液态空速7 h-1、氢气与溶剂油体积比60的条件下,可以将加氢汽油中的硫质量分数从69 μg/g降至10 μg/g以下,而汽油RON仅降低0.6个单位,硫容量(w)约为9.98 %。该吸附剂对原料有很好的适应性,可再生,多次循环使用后脱硫性能基本不变。  相似文献   

2.
Ni/ZnO吸附剂脱除催化裂化汽油中的硫   总被引:4,自引:1,他引:3  
 采用等体积浸渍法制备了Ni质量分数为4%的Ni/ZnO吸附剂,以FCC汽油为原料,通过固定床吸附实验评价了Ni/ZnO吸附剂对催化裂化汽油的吸附脱硫性能以及吸附剂的再生性能。结果表明,较高的反应温度、压力和较低的体积空速有利于提高Ni/ZnO对FCC汽油的吸附脱硫效果,并且汽油辛烷值损失小。Ni/ZnO吸附剂脱硫的适宜操作条件为: 温度370~380℃,吸附压力2.0MPa,氢/油摩尔比1.5,体积空速4.0h-1,此时吸附剂的穿透硫容 (硫质量分数达到30μg/g时,认为吸附剂穿透,测定吸附剂中的硫质量分数,即为吸附剂的穿透硫容。)为2.54%,汽油辛烷值损失1.1个单位。该吸附剂可以再生,多次循环使用后其脱硫性能基本保持不变。  相似文献   

3.
采用均匀共沉淀法制备了Ni-Zn复合氧化物吸附剂,并在固定床上考察了预还原、吸附条件、模拟油的不同组分对其吸附脱硫性能的影响。结果表明,还原态的Ni是吸附剂的主要活性成分,吸附反应最适宜的温度和压力分别为673 K、1.0 MPa,模拟油中的烯烃组分对吸附剂脱硫性能的影响比芳烃的影响大。吸附剂在温度673 K、压力1.0 MPa、液时空速60 h-1、氢气与模拟油的体积比为200(氢气体积为标准状态下的体积)时对含硫质量浓度100 mg/L的模拟油A的硫容为360 mg/g。噻吩首先在Ni原子上进行氢解生成H2S,然后H2S快速与ZnO结合生成ZnS。此外该吸附剂对原料有很好的适应性,并具有很好的再生性能。  相似文献   

4.
先采用水热法制备出氧化锌(ZnO)纳米线,然后以硝酸镍作为活性组分的前驱体盐,ZnO纳米线作为载体,采用等体积浸渍法制备出镍(Ni)/ZnO催化剂,考察了水热反应时间对ZnO纳米线微观形貌及Ni/ZnO催化剂孔结构的影响,并在80 m L固定床反应管中考察了Ni/ZnO催化剂的反应吸附脱硫性能。结果表明:当水热反应时间为36 h时,所制备ZnO纳米线特征衍射峰尖锐,呈现花簇状生长;Ni/ZnO催化剂的比表面积最大,其值为35.25 m2/g;吸附脱硫反应持续60 h后,脱硫率仍高于91%。  相似文献   

5.
采用混捏法制备了不同Ti含量的ZnO-TiO2载体,采用等体积浸渍法制备了NiO/ZnO-TiO2汽油脱硫吸附剂前驱体,并采用X射线衍射(XRD)、压汞、NH3程序升温脱附(NH3-TPD)、H2程序升温还原(H2-TPR)和H2程序升温脱附(H2-TPD)等手段对其进行了表征。以催化裂化轻汽油为原料,于氢气氛围下对NiO/ZnO-TiO2前驱体还原得到Ni/ZnO-TiO2吸附剂,在固定床上考察了Ti掺杂对该吸附剂脱硫性能的影响。结果表明:Ti的掺杂提高了Ni/ZnO吸附剂中活性组分Ni的分散度,增加了Ni活性位点,增强了吸附剂中强酸酸性及酸强度,Ti掺杂的吸附剂脱硫性能显著提高;Ti的掺杂能够减少游离Ni,有效抑制烯烃饱和;吸附剂脱硫性能随着Ti掺杂量的增加呈现先增强后减弱的趋势,当Ti掺杂质量分数为5%时,吸附剂具有最优脱硫性能,能够将FCC轻汽油中硫质量分数由300 μg/g降低至5 μg/g以下,穿透硫容为6.711%(每克吸附剂吸附硫67.11 mg),烯烃质量分数增加0.6百分点,降低了汽油辛烷值损失。  相似文献   

6.
采用水热合成法制备了棒状CuO-ZnO复合氧化物,采用等体积浸渍法制备了Ni/CuO-ZnO吸附剂,采用TG、SEM,XRD,BET方法进行了表征。在固定床反应器中进行了吸附剂的反应吸附脱硫性能评价。结果表明:制备的CuO-ZnO复合氧化物呈棒状结构,复合氧化物适宜的焙烧温度为500 ℃;Cu的掺杂有效改进了反应吸附剂的脱硫性能,Cu的最佳掺杂量(w)为10%,掺杂Cu后脱硫率较Ni/ZnO平均脱硫率提高17.4百分点,且能延长有效脱硫时间,吸附剂在45 h左右仍能保持较高的脱硫活性。  相似文献   

7.
在催化裂化汽油深度脱硫过程中,采用传统的Ni/ZnO吸附剂存在烯烃饱和现象,造成辛烷值损失。针对上述问题,通过在Ni/ZnO吸附剂中引入Zn/ZSM-5芳构化组分,研究催化裂化汽油反应吸附脱硫耦合烯烃芳构化反应性能。采用等体积浸渍法制备了Ni/ZnO-Zn/ZSM-5双功能耦合催化剂,评价了耦合催化剂的脱硫、烯烃芳构化性能,考察了Ni含量及Ni在ZnO和Zn/ZSM-5上的分配比对其催化性能的影响。结果表明:在反应温度450℃条件下,催化剂在Ni质量分数为6%、Ni在ZnO和Zn/ZSM-5上的分配比为1∶1时的性能最优,芳构化率为38.58%,液体收率为88.33%。优化反应的温度条件,在温度为420℃时,6%Ni/ZnO-Zn/ZSM-5(1∶1)催化剂的脱硫率可达98.7%,烯烃转化率为54.0%,芳构化率为29.7%,与常规Ni/ZnO吸附剂相比,6%Ni/ZnO-Zn/ZSM-5(1∶1)催化剂作用下的辛烷值损失降低0.69。  相似文献   

8.
采用水热法合成了Mn-Zn复合氧化物,用等体积浸渍法制备了Mn-Zn复合氧化物负载Ni脱硫催化剂。采用XRD、FT-IR、N_2吸附-脱附、XPS等手段表征Mn-Zn复合氧化物和相应Ni催化剂,并以正庚烷-噻吩为模型化合物,考察了所制备的脱硫催化剂的催化活性。结果表明,Mn-Zn形成复合氧化物后,Mn以+4价离子存在,并且进入ZnO的晶格内部,替代了Zn的格位,改变了ZnO的晶胞参数和粒子尺寸,比表面积、孔体积、孔径明显增大;负载金属Ni的Mn-Zn复合氧化物催化剂的脱硫催化活性比纯ZnO负载Ni催化剂的脱硫催化活性提高14%,并且具有良好的重复使用性能。  相似文献   

9.
以商业化的活性炭(AC)为载体,采用等体积浸渍法制备了不同金属改性的活性炭吸附剂,用于脱除氢气中的噻吩,采用固定床动态吸附法考察了过渡金属改性吸附剂及不同含量Cu改性吸附剂对噻吩的脱除性能。利用N2吸附-脱附、X射线衍射、扫描电子显微镜和能量色散谱等方法对吸附剂进行了表征和分析。结果表明:Cu负载量(w)为3%时,活性炭具有最佳脱硫能力,噻吩穿透时间为22 h,比未改性的活性炭吸附剂延长7 h;活性炭经Cu改性后仍保留了丰富的多孔结构,但比表面积和孔体积均有所下降;改变活性组分CuO在吸附剂表面的分布,对改性吸附剂吸附噻吩有较好的促进作用,有助于提高吸附噻吩的容量。  相似文献   

10.
采用过量浸渍法制备负载不同金属组分的改性γ-Al2O3吸附剂,并对其进行XRD、扫描电子显微镜和N2物理吸附-脱附表征。在常温常压下,利用小型固定床实验考察该系列吸附剂对由苯并噻吩溶于正庚烷中配制而成的模拟汽油的吸附脱硫性能,着重考察了负载金属种类(Ag、Ce、Cu、Fe、Ni)对吸附剂吸附脱硫性能的影响,以及硝酸银溶液浓度、焙烧温度和焙烧时间对Ag-γ-Al2O3吸附剂吸附脱硫性能的影响及其再生性能。结果表明,在5种不同金属改性γ-Al2O3吸附剂中,Ag-γ-Al2O3吸附剂的吸附脱硫性能最好;在最佳制备条件,即在硝酸银溶液浓度0.2mol/L、焙烧温度450℃、焙烧时间5.5h下制备的Ag-γ-Al2O3对模拟汽油的处理量可达46mL/g。Ag-γ-Al2O3再生吸附剂对模拟汽油的处理量为39mL/g,达到新鲜吸附剂的84.8%。  相似文献   

11.
The effect of mixed oxide support on the performance of the reactive adsorption desulfurization (RADS) for Ni/ZnO was invested by using thiophene in model gasoline in a fixed bed reactor. A series of oxide supports of Ni/ZnO was synthesized by co-precipitation method and characterized by XRD, N2-adsorption, TPR and NH3-TPD. It was found that the desulfurization capacity of Ni/ZnO is enhanced greatly when active components were supported on proper mixed oxide. Ni/ZnO supported on oxides exhibits much higher desulfurization efficiency and sulfur adsorption capacity than unsupported Ni/ZnO and the synthesized Ni/ZnO-SA adsorbent exhibits the highest efficiency for thiophene removal. The higher desulfurization activity and sulfur capacity of Ni/ZnO supported on SiO2-Al2O3 with small particle size, high specific surface area and large pore volume promotes the highly dispersion of active metal phase and the transfer of sulfur to ZnO with lower mass transfer resistance. γ-Al2O3 can weaken the interaction of active phases and SiO2 as well as increasing greatly the amount of weak acid. Therefore, these oxides have a great influence on the structure and chemical properties of the catalyst.  相似文献   

12.
采用等体积浸渍法对ZnO 活性炭吸附脱硫剂进行Cu改性,并采用XRD、BET、TPR等手段对脱硫剂进行表征。以硫质量分数782 μg/g的胜华炼油厂催化加氢汽油为原料,采用10 mL固定床微型反应器评价脱硫剂的脱硫性能,考察Cu的负载量、反应温度、反应压力、氢/油体积比对脱硫剂的脱硫性能影响。结果表明,研制的Cu改性吸附脱硫剂具有较好的选择性深度脱硫能力,烯烃饱和也得到了较好的抑制;最优的工艺条件为反应温度300℃、反应压力1 MPa、液体空速10 h-1、氢/油体积比100。Cu负载量为4%的Cu改性脱硫剂ADS Cu 4具有优异的脱硫性能,在最优工艺条件下得到硫质量分数低于10 μg/g且辛烷值损失仅为03个单位的产品。  相似文献   

13.
以层析硅胶为载体,用等体积浸渍法制备金属镍负载量分别为1.4%,2.6%,3.8%,5.0%,6.2%的脱氮吸附剂;在实验室间歇式吸附装置上,考察在氮化物浓度为1 000 μg/g、吸附温度为120 ℃、油剂质量比60:1条件下,吸附剂的金属负载量对喹啉模拟柴油及吲哚模拟柴油的吸附脱氮效果,结果表明:当金属负载量为5.0%时,喹啉的平衡吸附量最大,当金属负载量为2.6%时,吲哚的平衡吸附量最大;喹啉和吲哚在吸附剂上的吸附明显具有多分子层吸附的基本特征。考察不同吸附温度下吸附剂对喹啉和吲哚的吸附效果,结果表明:吸附温度为100 ℃和120 ℃时,吸附剂对喹啉模拟柴油的吸附效果较好,140 ℃时,吸附剂对吲哚模拟柴油的吸附效果较好。  相似文献   

14.
以吉化剩余污泥和辽河浮渣两种典型含油污泥为原料制备污泥吸附剂。吉化剩余污泥制备吸附剂(JA)的方法是以ZnCl2溶液为活化剂,浓度0.5 mol/L,热解温度550 ℃,热解停留时间2 h;辽河浮渣制备吸附剂(LA)方法为直接热解,热解温度650 ℃,热解停留时间2 h。结果表明:制备的两种吸附剂微观表面粗糙,呈不规则的多孔结构,并以中孔为主;JA和LA两种吸附剂的碘吸附值分别达到451.22 mg/g和376.48 mg/g,且对采油污水中COD和石油类的去除率强于木质活性炭,处理后的采油污水COD、石油类含量均达到《污水综合排放标准》(GB8978-1996)中的二级标准。  相似文献   

15.
将过渡金属离子(Fe3+,Co2+,Ni2+,Cu2+)负载到硅胶上,先制得过渡金属离子改性硅胶吸附剂(Fe(Ⅲ)/SiO2,Co(Ⅱ)/SiO2,Ni(Ⅱ)/SiO2,Cu(Ⅱ)/SiO2),后在氢气环境中和500℃下对过渡金属离子改性硅胶吸附剂进行还原处理,制备出过渡金属改性硅胶吸附剂Fe/SiO2,Co/SiO2,Ni/SiO2。分别在间歇式和连续固定床吸附装置上,以焦化柴油(氮质量分数为2.1×10-3)为原料,在常压下研究了吸附条件对吸附剂脱氮效果的影响。结果表明,最佳吸附温度为120℃,最佳油剂比[m(焦化柴油)/m(吸附剂)]为60;平衡吸附量[m(氮)/m(吸附剂)]由小到大顺序为Fe(Ⅲ)/SiO2,Ni/SiO2,Co(Ⅱ)/SiO2,Cu(Ⅱ)/SiO2,Fe/SiO2,Ni(Ⅱ)/SiO2,Co/SiO2;分别用Fe(Ⅲ)/SiO2,Ni/SiO2,Co(Ⅱ)/SiO2处理焦化柴油,吸附剂的平衡吸附量分别为22.713×10-3,23.305×10-3,18.480×10-3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号