首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
《高压电器》2017,(8):9-16
随着输配电网电压等级的提高和覆盖范围的扩大,电磁环境与线路覆冰问题日益突出,而目前对于覆冰条件下输电线路的电磁环境特性关注较少。为此文中使用SES-Enviro Plus软件,针对重冰区220 kV同塔双回交流输电线路电磁环境进行仿真计算。通过改变相间距离、分裂根数、子导线外径、分裂间距、导线高度,研究了不同参数对电磁环境的影响,并对比了有/无覆冰时的电磁环境差异。仿真结果表明:在文中所取参数区间内,仅有电场强度超出限值;导线覆冰会使线路周围电磁环境恶化,但不改变线路参数对电磁环境的作用规律。针对重冰区220 kV同塔双回线路设计,笔者从电磁环境的角度出发提出了相关建议。该研究结果对重冰区输电线路设计具有指导意义并能提供一定的定量依据。  相似文献   

2.
为了获得特高压交流同塔双回输电线路雨天电晕损失评估的关键数据,采用特高压交流同塔双回试验线段、特高压电晕笼两种试验手段,应用光纤数字化测量方法监测雨天气象条件下特高压交流同塔双回试验线段电晕损失,测量特高压电晕笼人工淋雨降雨率为12、16、20 mm/h条件下8×LGJ-630分裂导线电晕损失。并采用有效电晕损失等效计算方法,对电晕笼与试验线段试验结果进行等效计算分析。电晕笼与试验线段电晕损失基本等效,其误差在±6.5%范围内。研究结果验证了电晕笼分裂导线电晕损失试验结果与特高压交流同塔双回试验线段雨天监测结果的一致性,同时证明了有效电晕损失等效计算方法可以较为准确地将淋雨条件下电晕笼分裂导线电晕损失等效换算成特高压交流线路,研究成果可为特高压交流同塔双回输电线路电晕损失评估提供参考。  相似文献   

3.
在不同极导线布置方案下同塔双回线路的电磁环境和两回线路间的相互影响存在差异,因此有必要对±500 k V同塔双回直流输电线路极导线布置方案进行对比分析,为同塔双回直流输电线路的设计提供参考。以葛南—荆沪直流线路同塔部分为例,将单回直流输电线路的电磁环境计算方法拓展到双回线路中,计算该直流线路同塔部分的导线、地线表面最大电场强度、无线电干扰值、可听噪声和电晕损失,并在PSCAD/EMTDC中搭建模型进行了仿真分析。根据电磁环境计算结果和仿真数据,综合各方面指标确定了葛南—荆沪直流线路同塔部分的最优极导线布置方案。  相似文献   

4.
750 kV超高压交流输电线路电磁环境研究   总被引:2,自引:0,他引:2  
采用CDEGS软件包,对750 kV交流输电线路周围的电磁环境进行了仿真研究。以三相双回架空线路为模型,分析了导线对地高度、相序布置、分裂导线的根数、分裂间距、分裂导线子导线直径等因素变化对工频电场、工频磁场、无线电干扰和可听噪声的影响;提出了改善线路周围电磁环境的措施;根据工频电场的限值划定线路走廊的宽度;并分别比较了大雨、湿导线和晴天时输电线路周围的无线电干扰和可听噪声。仿真结果表明影响750 kV输电线路电磁环境的主要因素是可听噪声和工频电场。  相似文献   

5.
《高压电器》2017,(11):183-190
为了有效分析500 kV同塔双回紧凑型输电线路周围电磁环境。文中将模拟电荷法与矩量法相结合进行电场计算,采用毕奥—萨瓦定律进行磁场数值,采用激发函数法及美国BPA推荐的预测法进行可听噪音、无线电干扰计算。研究了500 kV同塔双回紧凑型线路不同子导线类型、导线相间距、下相导线最低高度下的电磁场强度、可听噪音、无线电干扰。研究结果表明:为满足线路下方电磁环境要求,邻近民房下相导线最低点对地高度不低于16 m,通过公众容易接触和跨越公路的地区下相导线最低点不低于12 m,跨越农田下相导线最低点对地高度不低于10 m;导线相间距建议取6.7 m。研究结果为500 kV同塔双回紧凑型线路的设计提供参考。  相似文献   

6.
为探讨500 k V超高压输电线路下的电场分布问题,在验证了有限元电磁场分析软件Ansoft maxwell的有效性后,建立了同塔双回输电线路模型。主要分析与研究了相导线对地高度、分裂导线结构尺寸等因素对电场特性的影响,以及线路发生故障或停电检修时电场分布的变化规律,这为降低输电线路周围电场和对电磁环境的优化提供理论依据和方法,同时对停电检修线路注意事项提供一定的参考。  相似文献   

7.
750kV单回紧凑型输电线路的电磁环境   总被引:9,自引:5,他引:4  
为了指导我国750kV紧凑型输电工程的环境评价、设计和建设,对750kV单回紧凑型线路的电磁环境进行了系统研究。通过总结我国对西北交流750kV单回路和同塔双回路电磁环境的研究成果,结合已运行的750kV单回路的电磁环境实测数据,分析了750kV单回路和同塔双回路电磁环境控制指标的适用性,确定了750kV单回路紧凑型线路的电磁环境控制指标。计算了750kV单回紧凑型线路不同导线型式、分裂方式、相间距离下的工频电场和磁场强度、可听噪声和无线电干扰水平。依据相应的电磁环境控制指标,提出了750kV单回紧凑型线路的导线型式、分裂方式和相间距离的建议:750kV单回紧凑型输电线路采用等边倒三角形布置;相间距离取10m;下相导线最低高度为15m;子导线分裂间距为400mm;海拔高度<1500m时采用8×300导线;海拔高度为1500~2500m时采用8×400导线;海拔高度>2500m时采用8×500及以上更大截面导线。  相似文献   

8.
特高压输电线路工频电场的仿真研究   总被引:6,自引:5,他引:1  
针对特高压输电线路分裂导线等效半径较大的特点,在建立特高压输电线路分裂导线模型的基础之上,基于边界元法对单回平行排列、同塔双回、紧凑型及单回酒杯塔型4种不同的输电线路分裂导线表面及线下距地1 m处的工频电场进行了计算。结果表明,针对我国复杂的地理条件可以采用不同的导线分布模式,其中紧凑型输电方式不仅可以改善线路下电磁环境,而且还可大幅减少输电走廊的宽度。  相似文献   

9.
为了有效研究750kV/330kV混压同塔四回输电线路电磁环境,文中采用模拟电荷法计算同塔四回混压输电线路导线下的工频电场,采用毕奥—萨瓦定律计算磁场数值,并采用激发函数法进行了无线电干扰的计算,同时运用BPA公式进行了可听噪声的计算。针对同塔四回混压输电线路不同导线相序布置、不同分裂间距、不同杆塔呼称高进行了系统的研究。结果表明:A、B型塔采用A6和B6相序布置可以有效改善线路下方电磁环境;导线分裂间距对电场、磁感应强度影响较小;电场、磁感应强度、无线电干扰和可听噪声随着杆塔呼称高增加而降低,其中电场、磁感应强度和无线电干扰减幅较大,可听噪声减幅较小。依据相应的电磁环境控制指标,获得了满足电磁环境要求的杆塔呼称高度。  相似文献   

10.
750kV同塔双回输电路相序排列方式的研究   总被引:1,自引:0,他引:1  
同塔双回输电线路的相序排列方式对线路的电磁环境和防雷性能有较大影响.本文以750 kV兰州东一平凉同塔双回输电线路为例,计算了同塔双回、每回竖直排列线路各种相序排列方式线路的导线表面场强、地面电场、无线电干扰、可听噪声、电晕损失、反击跳闸率等线路设计时需要重点考虑的参数.结果表明:两回线路以ABC/ABC和ABC/BAC相序排列时线路电磁环境最好、电晕损失最低:而ABC/ABC和ABC/ACB两种相序排列的双回反击跳闸率远高于其他相序排列方式.因此从改善线路电磁环境、降低电晕损失、改善防雷性能几方面出发,建议同塔双回、每回竖直排列线路尽量采用ABC/BAC相序排列方式.  相似文献   

11.
目前,同塔多回和高载流导线技术被广泛用来提升线路传输容量,而其感应电水平是检修作业人员防护和设备选型的重要依据.文中针对某大容量、远距离的500 kV同塔双回输电线路建立线路仿真模型,研究了同塔双回线路共塔长度、避雷线保护角、线路潮流、回路间导线水平间距和土壤电阻率等五个因素对感应电的影响,并基于最大信息系数(MIC)对各因素的敏感性进行了定量分析.结果表明:静电感应电压主要受导线间距(MIC =0.735)和避雷线保护角(MIC =0.69)影响;电磁感应电压与双回线路共塔长度、潮流及导线间距有高度相关性;共塔长度(MIC =0.82)和导线间距(MIC =0.70)明显影响静电感应电流的大小;电磁感应电流与线路潮流、导线间距均达到高度相关;而土壤电阻率的影响忽略不计.研究结果为超高压输电线路的检修和作业人员安全防护措施的制定提供了技术参考.  相似文献   

12.
1 000 kV同塔双回输电线路电气不平衡度及换位问题研究   总被引:5,自引:0,他引:5  
电气不平衡度是衡量输电线路性能和电能质量优劣的重要指标。文章以淮南-上海1 000 kV特高压同塔双回输电工程为例,借助EMTP和Matlab软件仿真计算不同情况下线路的电气不平衡度,根据计算结果研究特高压双回线路的电气不平衡度和换位问题。得出如下结论:双回路导线逆相序排列可明显降低线路的不平衡度,推荐逆相序排列下1 000 kV同塔双回输电工程换位距离取200 km;双回路同向换位后的电气不平衡度明显低于双回路反向换位;对于1 000 kV淮南-上海同塔双回输电工程,推荐全线导线采取逆相序排列方式,淮南-皖南段进行一次同向全换位即可满足线路不平衡度限值要求。  相似文献   

13.
750 kV同塔双回输电线路电气不平衡度及换位研究   总被引:2,自引:1,他引:1  
同塔双回线路电气不平衡度不仅与导线空间布置有关, 还跟相序排列方式有关。因此必须利用导线换位, 并且采用适当的相序排列方式以及换位方向来减小线路的不平衡度。对于750 kV 兰州东—平凉—乾县同塔双回送电线路工程, 推荐导线排列方式采用逆相序排列, 并且兰州东—平凉段进行一次反向全换位,平凉—乾县段进行一次反向全换位, 即可满足线路不平衡度限值的要求。  相似文献   

14.
在线路走廊比较紧张的东部地区,特高压电网考虑架设同塔混压多回输电线路,开展特高压同塔混压线路反击耐雷性能研究具有重要的意义。采用统计法计同时考虑工作电压的影响,在电磁暂态程序(PSCAD/EMT-DC)中建立了1000kV/500kV同塔混压四回输电线路反击耐雷性能仿真模型。和常规线路对比,得出了特高压同塔混压线路反击耐雷性能的特点。针对其特点,分析了500kV上层横担外侧导线和一侧导线绝缘水平及500kV相序排列对线路反击耐雷性能的影响。结果表明:随着外侧导线绝缘水平的增强,500kV线路的单、双回反击跳闸率降低;随着横担一侧导线绝缘水平的增强,500kV线路的双回反击跳闸率降低;当外侧导线为异名相导线时,500kV线路的单回反击跳闸率较高,双回反击跳闸率较低。为了改善500kV线路的反击耐雷性能,可以增强外侧导线的绝缘水平,为了改善500kV线路的双回反击耐雷性能,可以增强横担一侧导线的绝缘水平,采用不平衡绝缘,外侧导线应采用异名相导线。  相似文献   

15.
高压直流双回输电线路合成电场与离子流的计算   总被引:3,自引:1,他引:2  
高压直流双回输电线路在我国尚无设计与运行经验。为此,文章对双回直流线路电晕效应产生的离子流与综合电场强度进行了计算,分析了导线不同的布置方式以及线路间距、对地高度、导线分裂数、导线半径等结构参数对地表离子流和场强的影响。结果表明,两回线路上下排布方式的地表合成场强与离子流密度较小;在相同导线尺寸与同等架设高度下,合理排布的双回线路的地表场强与离子流远小于单回线路,且双回线间距越小地表场强与离子流越小;同塔双回线路的电磁环境要优于单回线路。  相似文献   

16.
为研究特高压六相输电线路表面电场和空间电场的特性,参考特高压同塔双回输电线路杆塔结构,计算设计特高压六相输电系统杆塔典型尺寸并选取分裂导线型号。在此基础上,考虑分裂导线中各子导线间的相互影响,计算特高压六相输电导线表面最大场强和线路下距地面1 m处的空间电场分布,并将计算值与相应电压等级的同塔双回线路进行比较,结果表明特高压六相输电导线表面场强和线路下距地面1 m处的空间电场均优于同塔双回线路。故特高压六相输电线路具有更好的环保性能。  相似文献   

17.
1000 kV级交流特高压输电线路导线最小对地距离研究   总被引:1,自引:0,他引:1  
导线最小对地距离的取值是特高压输电线路设计过程中需要考虑的关键因素之一。通过总结国外特高压输电线路的相关研究成果,结合我国超高压输电线路的设计经验,提出了把"最大地面电场强度限值"作为我国交流特高压线路导线最小对地距离的选取原则。基于逐步镜像法建立了特高压架空线下空间电场的数学模型,并按照不同区域地面电场控制指标的要求,通过计算确定了1000 kV级交流特高压单回和同塔双回输电线路导线在相应区域下的最小对地距离。研究了线路运行电压、相间距离、分裂导线结构、导体布置形式和双回路相序布置方式等因素对导线最小对地距离取值的影响规律。  相似文献   

18.
为预防导线粘连带来的危害,研究典型500 kV输电线路四分裂导线在直流融冰试验时的子导线收缩现象,根据3维有限元法对分裂导线LGJ-4×400/35与450 mm×450 mm方型阻尼间隔棒进行实形建模。在温度为-5℃、风速为5 m/s、覆冰厚度为10 mm的环境气候下,直流融冰电流分别为1 000、2 000、3 000、4 000 A的条件下,研究分裂导线和间隔棒的磁场分布,计算单位长度输电导线的电磁力;利用找形分析法建立悬链线模型,在500 m档距内,计算分析了输电导线在覆冰作用下的垂直位移,张力;在60 m最大次档距下,计算分析了覆冰和电磁力共同作用下分裂导线收缩位移;仿真证明了融冰电流在3 000~4 000 A范围内,500kV输电线路四分裂导线出现明显收缩现象。  相似文献   

19.
为研究同塔双回500 kV高压直流线路在不同极线布置方式下对接地故障的过电压水平以及直流过电压大小的影响,根据实际工程参数,采用电磁暂态仿真软件PSCAD建立500 kV高压直流输电模型。模拟单极线路接地故障,得到不同极线布置方式在健全极线路上产生的过电压水平及分布情况,得出接地故障时最优的极导线排列方式。通过仿真分析了接地电阻,直流滤波器结构,直流线路安装避雷器以及线路参数等措施对直流过电压大小的影响。研究表明,改变直流滤波器结构,线路装设避雷器等措施可以有效的降低过电压水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号