首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(1):525-539
C/C-BN composites and Cf/BN/PyC composites exhibiting different structures for pyrolytic carbon (PyC) and boron nitride (BN) were studied comparatively to determine their oxidation behavior. This study used five types of samples. Porous C/C composites were modified with silane coupling agents (APS) and then fully impregnated in water-based slurry of hexagonal boron nitride (h-BN); the resulting C/C-BN preforms were densified by depositing PyC by chemical vapor infiltration (CVI), resulting in three types of C/C-BN composites. The other two Cf/BN/PyC composites were obtained by depositing a BN interphase and PyC in carbon fiber preforms by CVI; one was treated with heat, and the other was not. This study was focused on determining how the PyC deposition mechanism, morphology and pore structure were affected by the method of BN introduction. In the 600–900 °C temperature range, the Cf/BN/PyC composites and C/C composites underwent oxidation via a mixed diffusion/reaction mode. The C/C-BN composites had a different pore structure due to the formation of nodules comprising h-BN particles; both interfacial debonding and cracking were reduced, resulting in higher resistance to gas diffusion, lower oxidation rate and larger activation energy (Ea) in the temperature range 600–800 °C. In addition, the mechanism for oxidation of C/C-BN composites gradually exhibited diffusion control at 800–900 °C because the formation of h-BN oxidation products healed the defects. The oxidation mechanism was more dependent on pore structure than on BN structure or content.  相似文献   

2.
《Ceramics International》2017,43(10):7607-7617
The carbon fiber reinforced/carbon-boron nitride (C/C-BN) dual matrix composites were fabricated via adding hexagonal boron nitride (h-BN) powders into the needled carbon felt and subsequent chemical vapor infiltration (CVI) process. An experimental investigation was performed to study the influences of BN volume content on the microstructures and tribological properties of C/C-BN composites. The results indicate that the pyrolytic carbon (PyC) in the C/C-BN composites is regenerative laminar (ReL) due to the inducement of BN powders during CVI process, whereas the PyC in the C/C composite is classic smooth laminar. Additionally, the friction coefficients of C/C-BN composites with three different BN contents in volume fractions (4.5, 9 and 13.5 vol%) are all higher compared to the reference C/C composite (0.22). Note that the highest coefficient of friction (0.29) is obtained when the BN volume content in the C/C-BN composite is 9 vol%. Moreover, the linear and mass wear rates of C/C-BN composites as well as the 30CrSiMoVA counterparts are significantly decreased with the increase of BN volume content. The favorable friction and wear properties of C/C-BN composites are attributed to the synergistic effect induced by the ReL PyC and BN. The microstructural variation of C/C composites modified by h-BN could improve the compatibility between the C/C-BN composites and 30CrSiMoVA counterpart, resulting in an enhanced adhesive attraction between the wear debris and the surface of 30CrSiMoVA counterpart. Furthermore, the investigations concerning the friction surfaces indicate that the formation of sheet-like friction films with large areas are more easily to occur on the surfaces of 30CrSiMoVA counterparts mating with the C/C-BN composites rather than mating with the C/C composite.  相似文献   

3.
Carbon/carbon-boron nitride (C/C-BN) composites were manufactured by adding hexagonal boron nitride (h-BN) powders into carbon fiber preform and a subsequent chemical vapor infiltration (CVI) process for deposition of pyrolytic carbon (PyC). Microstructure and oxidation behavior of carbon/carbon composites with 9?vol% h-BN (C/C-BN9) were studied in comparison to carbon/carbon (C/C) composites. Results showed that with the addition of h-BN powders, a regenerative laminar (ReL) PyC with higher texture was achieved. Note that the introduction of h-BN powder make great contributes to graphitization degree of PyC, leading to larger oxidation activation energy. Moreover, under an air atmosphere, h-BN started to oxidize above 800?°C, and generated molten boron oxide (B2O3) which prohibited oxygen diffusion by filling in pores, cracks and other defects. As these reasons mentioned above, after oxidation tests under an air atmosphere, mass losses of C/C-BN9 composites were lower than that of C/C composites at all test temperatures (600–900?°C), indicating that the oxidation resistance of C/C-BN9 composites is better than that of C/C composites.  相似文献   

4.
The purpose of the work was to determine the conditions of CF preparation to obtain carbide composites with favorable mechanical response. The relationships between the interfacial properties of fiber/polymethylsiloxane composite, and mechanical properties of the resulting fiber/carbide composites were investigated. The CF/resin interfacial strength was modified by oxidation of CF surface with nitric acid, silanization, and depositing CNT or a pyrolytic carbon layer (PyC). The study of composite interphases (ILSS and SEM) and surface tests of the modified CF (XPS, FT-IR, wettability measurements) showed different nature of the bonding occurring at the fiber/resin and fiber/ceramics boundary. The CF silanization significantly improved the ILSS between CFs and resin by 38.5%, while reduced flexural properties of carbide composites. The most promising treatment method of CF for PIP-based ceramic composites was modification with PyC, which provided 2 times higher ILSS, 1.5 times higher flexural strength and improved work to fracture (WF) as compared to unmodified CF.  相似文献   

5.
A carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube (CF–POSS–CNT) hybrid reinforcement was prepared by grafting CNTs onto the carbon fiber surface using octaglycidyldimethylsilyl POSS as the linkage in an attempt to improve the interfacial properties between carbon fibers and an epoxy matrix. X-ray photoelectron spectroscopy, scanning electron microscopy, dynamic contact angle analysis and single fiber tensile testing were performed to characterize the hybrid reinforcements. Interlaminar shear strength (ILSS), impact toughness, dynamic mechanical analysis and force modulation atomic force microscopy were carried out to investigate the interfacial properties of the composites. Experimental results show that POSS and CNTs are grafted uniformly on the fiber surface and significantly increase the fiber surface roughness. The polar functional groups and surface energy of carbon fibers are obviously increased after the modification. Single fiber tensile testing results demonstrate that the functionalization does not lead to any discernable decrease in the fiber tensile strength. Mechanical property test results indicate the ILSS and impact toughness are enhanced. The storage modulus and service temperature increase by 11 GPa and 17 °C, respectively. POSS and CNTs effectively enhance the interfacial adhesion of the composites by improving resin wettability, increasing chemical bonding and mechanical interlocking.  相似文献   

6.
3D C/SiC-BN composites were fabricated by filler enhanced polymer infiltration and pyrolysis (FE-PIP) through in situ conversion of active filler boron into h-BN in the high temperature treatment process. The bending strengths and microstructures of composites were studied here. Interphase layers deposited on the fiber surfaces can prevent the strong bonding between fiber reinforcements and composite matrix and repair the defects on the fiber surface, which can improve the bending strength and toughness of composites. The bending stress of C/SiC-BN composites without interphase layer is about 170 MPa while those of composites with PyC or PyC/SiC interphase layers are higher than 300 MPa. Some large pores were left in the interwoven zones while intra-bundle zones were relatively dense, only a small amount of micro-pores could be observed. It could also be concluded that the length of pulled-out fibers was much longer and the pulled-out fiber surface was smoother when interphase layers were deposited. Because the matrix derived from the pyrolysis of slurries adheres to the fiber bundles, some phases with layered structures could be observed in the matrix near the reinforcements. The microstructure evolution of 3D fiber reinforced ceramic matrix composites were also analyzed in this work based on the observation of both 3D C/SiC-BN composites and 3D C/SiC composites fabricated by FE-PIP, where boron and SiC particles were applied as active fillers and inert fillers respectively.  相似文献   

7.
The design of an interfacial structure is particularly important for load transfer in composites. In this paper, different amounts of carbon nanotubes (CNTs) were grafted onto the carbon fiber (CF) surface by adjusting grown temperature using injection chemical vapor deposition (ICVD). The prepared CF preform grafted with CNTs (CNTs-CF) were used to reinforce magnesium alloy by squeeze casting process. The microstructures were analyzed by means of optical microscope (OM) and scanning electron microscope (SEM), and the interlaminar shear strength (ILSS) and tensile strength of the composites were determined by double-notch shear test and tensile test. The results indicated that moderate ILSS was more conducive to improving the tensile properties of carbon fiber reinforced magnesium matrix (Cf/Mg) composites. Compared with Cf/Mg, the tensile strength of composite with CNTs increased by about 80%. For Cf/Mg composites grafted with CNTs, CNTs had the effects of delaying crack propagation and increasing energy consumption by the pull-out and bridging mechanism, which were the main reasons for improving the strength. The analysis of shear fracture surface showed that the crack propagation path can be optimized by adjusting the amounts of grafted CNTs. The presence of CNTs affects the stress distribution and consequently the crack initiation as well as the crack propagation.  相似文献   

8.
Boron-based protections were used on carbon fibre preforms in order to protect interfacial zones in C/C composites from oxidation. Wet treatments (H3BO3 in aqueous solution) and B–P CVD-coatings are not stable under low pressures at 1000 °C (the matrix deposition conditions in conventional CVI). Hence, they could not be used as C/C composite internal protections. Boron-ion implantation in carbon fibres improves their tensile strength by healing superficial carbon fibre defects but is not efficient as an internal protection in C/C composites, the boron-ions being implanted too far from the carbon fibre surface. B–C CVD-deposits are also not very efficient as internal protections. They oxidize faster than the carbon and lead to an important volume decrease. Holes are then formed at the interfacial zones at the beginning of the oxidation of the C/B–C/C composite passing from the surface to the core of the material.  相似文献   

9.
To better understand the pyrocarbon (PyC) interphase growth mechanism, a series of experiments was conducted on the PyC deposited on T-300™ and T-700™ carbon fibers by the chemical vapor infiltration (CVI) method. Nine groups of fabrication parameters were used to analyze the effects of deposition temperature, pressure, and residence time on the PyC interphase growth mechanism. Atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Raman spectroscopy, and nanoindentation tests were performed to characterize the microstructures of carbon fibers and PyC interphase. The PyC interphase growth mechanism was discussed, and the relationships between the fabrication parameters, R (C2/C6) value, texture type, and interphase thickness were established through numerical simulations. The hardness and modulus of PyC for T-300™ and T-700™ carbon fibers were measured. The tensile behaviors of C/SiC minicomposites with medium and high textures PyC interphases were analyzed. The C/SiC composite with the medium texture PyC interphase possessed the higher fracture strength and failure strain with a longer fiber pullout length at the fracture surface.  相似文献   

10.
In this article, modification of carbon fiber surface by carbon based nanofillers (multi-walled carbon nanotubes [CNT], carbon nanofibers, and multi-layered graphene) has been achieved by electrophoretic deposition technique to improve its interfacial bonding with epoxy matrix, with a target to improve the mechanical performance of carbon fiber reinforced polymer composites. Flexural and short beam shear properties of the composites were studied at extreme temperature conditions; in-situ cryo, room and elevated temperature (−196, 30, and 120°C respectively). Laminate reinforced with CNT grafted carbon fibers exhibited highest delamination resistance with maximum improvement in flexural strength as well as in inter-laminar shear strength (ILSS) among all the carbon fiber reinforced epoxy (CE) composites at all in-situ temperatures. CNT modified CE composite showed increment of 9% in flexural strength and 17.43% in ILSS when compared to that of unmodified CE composite at room temperature (30°C). Thermomechanical properties were investigated using dynamic mechanical analysis. Fractography was also carried out to study different modes of failure of the composites.  相似文献   

11.
对制备C/C复合材料的化学气相渗透工艺进行了系统的实验研究,着重分析了热解碳的沉积过程。研究表明,在化学气相渗透的初始阶段,热解碳主要在碳纤维表面沉积,并与碳纤维之间形成了界面结合;随后,热解碳的沉积继续填充碳纤维预制体内部的气孔。这一过程有助于缓解纤维与陶瓷基体之间的界面应力。研究表明,通过调节热解碳的沉积时间可以得到具有一定密度梯度的C/C复合材料。  相似文献   

12.
Multi‐walled carbon nanotubes/carbon fiber (MWCNTs/CF) hybrid fillers are employed to prepare MWCNTs/CF/epoxy composites. Results reveal that a great improvement of the thermal conductivities of the epoxy composites with the addition of MWCNTs/CF hybrid fillers, and the thermal conductivity of the MWCNTs/CF/epoxy composites is 1.426 W/mK with 8 vol% treated MWCNTs/CF hybrid fillers (5 vol% MWCNTs + 3 vol% CF). Both the flexural and impact strength of the MWCNTs/CF/epoxy composites are increased firstly, but decreased with the excessive addition of MWCNTs. The flexural and impact strength of the MWCNTs/epoxy composites are optimal with 2 vol% MWCNTs. For a given MWCNTs/CF hybrid fillers loading, the surface treatment of MWCNTs/CF hybrid fillers can further increase the thermal conductivities and mechanical properties of the MWCNTs/CF/epoxy composites. POLYM. COMPOS., 35:2150–2153, 2014. © 2014 Society of Plastics Engineers  相似文献   

13.
The fiber/matrix (F/M) interfacial shear strength (IFSS) of carbon/carbon (C/C) composites with PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers was investigated. To obtain C/C composites with PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers, a thin layer of PyC was deposited on carbon fibers. After this, TaC and SiC–TaC layer(s) were uniformly deposited on the PyC coated carbon fibers. As an outer-layer, a PyC layer was deposited on these TaC and/or SiC–TaC coated carbon fibers by isothermal chemical vapour infiltration (CVI) and then densified with resin carbon by impregnation and carbonization. Finally, C/C composites with PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers were obtained. The effects of PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers on interfacial shear strength (IFSS) of C/C composites were investigated. Single fiber push-out tests were conducted on the fibers aligned perpendicularly on the thin slices specimen surface using nano-indentation. Results showed that the IFSS of C/C composites decreased with the introduction of PyC–TaC–PyC and PyC–SiC–TaC–PyC multi-interlayers. After heat treatment (at temperatures ranging from 1400 to 2500 °C) of C/C composites with PyC–TaC–PyC multi-interlayers, it was found that the IFSS decreased with the increase in temperature. This decrease in IFSS is explained by taking into account the microstructural variations on heat treatment.  相似文献   

14.
Air plasma processing is introduced as a surface modification technique for carbon fibers to enhance the hygrothermal resistance of carbon fabric/epoxy composites. On carbon fiber surface subjected to 4-min plasma processing, there are 37.6% of carbon species present as –C–O–C groups and 9.3% of carbon species as –COOH groups. The moisture adsorption behavior of composites can be described by Fick’s law. Increase in temperature accelerates the initial moisture adsorption rate and results in a higher diffusion coefficient. The decreasing interlaminar shear strength (ILSS) of composites is mainly ascribed to the loss of adhesion at the fiber/matrix interface. A lower equilibrium moisture content of composites is caused by air plasma processing, which leads to the improved interfacial bonding strength and the higher retention rate of ILSS of carbon fabric/epoxy composites. The interface sensitivity and temperature dependence of moisture adsorption for carbon fabric/epoxy composites are discussed. The results presented herein demonstrate an effective strategy for enhancing hygrothermal resistance of carbon fiber-reinforced composites.  相似文献   

15.
Non-oxide fiber tow reinforced silicon nitride matrix composite was fabricated by low temperature CVI process with PyC as interphase. The tensile strength of the C and SiC fiber tow composites were 547 MPa and 740 MPa, respectively. The difference in tensile strength was analyzed based on the length, amount of pull-out fiber and also interface bonding. The infiltration uniformity of CVI silicon nitride (SiN) matrix within SiC fiber tow was comparable with that of CVI SiC matrix. These results suggested that the low temperature CVI process is suitable for the fabrication of fiber reinforced SiN matrix composites with proper interface bonding and high strength.  相似文献   

16.
Two-dimensional (2D) carbon fiber reinforced silicon carbide (C/SiC) composites with different initial strength were prepared by chemical vapor infiltration (CVI). After tensile property testing, results exhibited that as the heat-treatment temperature (HTT) increases to 1900°C, the tensile strength and toughness of the low strength specimen (LSS) increased by 110% and 530%, while the high strength specimen (HSS) increased by 5.4% and 550%, respectively. As observed from morphologies, the heat treatment increases the graphitization of the amorphous PyC interphase, which leads to the weakening of interfacial bonding strength (IBS). Meanwhile, the defects arising from heat treatment cause thermal residual stress relaxation. Therefore, the tensile strength and toughness of LSS with relatively high initial IBS increase significantly as HTT increases. For HSS with moderate initial IBS, the heat treatment slightly improves the tensile strength, but significantly improves the toughness. Consequently, the post-heat-treatment tensile properties of 2D C/SiC composites can be regulated by varying HTTs and different initial strength.  相似文献   

17.
The effects of the SiC nanowires (SiCNWs) and PyC interface layers on the mechanical and anti-oxidation properties of SiC fiber (SiCf)/SiC composites were investigated. To achieve this, the PyC layer was coated on the SiCf using a chemical vapour infiltration (CVI) method. Then, SiCNWs were successfully coated on the surface of SiCf/PyC using the electrophoretic deposition method. Finally, a thin PyC layer was coated on the surface of SiCf/PyC/SiCNWs. Three mini-composites, SiCf/PyC/SiC, SiCf/PyC/SiCNWs/SiC, and SiCf/PyC/SiCNWs/PyC/SiC, were fabricated using the typical precursor infiltration and pyrolysis method. The morphologies of the samples were examined using scanning electron microscopy and energy dispersive X-ray spectrometry. Tensile and single-fibre push-out tests were carried out to investigate the mechanical performance and interfacial shear strength of the composites before and after oxidization at 1200 °C. The results revealed that the SiCf/PyC/SiCNWs/SiC composites showed the best mechanical and anti-oxidation performance among all the composites investigated. The strengthening and toughening is mainly achieved by SiCNWs optimization of the interfacial bonding strength of the composite and its own nano-toughening. On the basis of the results, the effects of SiCNWs on the oxidation process and retardation mechanism of the SiCf/SiC mini-composites were investigated.  相似文献   

18.
C/C-SiC composites with highly textured pyrolytic carbon (HT PyC) were prepared by a combining chemical vapor infiltration and liquid silicon infiltration. The effect of HT PyC graphitization before and after 2327 and 2723 K on C/C-SiC composites was investigated. The mechanical properties decreased with increasing graphitization temperature, but graphitization treatment changed the fracture behavior from brittle like to pseudo-ductile. The decrease in bending strength from 306.21 to 243.69 MPa resulted from the weak interfacial bonding between HT PyC and fiber, and the good orientation of graphite layers. The crack at border of fiber bundle and longitudinal crack in HT PyC shortened the path of crack propagation, resulting in fracture toughness decrease from 21.11 to 14.72 MPa·m1/2. A more pseudo-ductile behavior was due to the longer pull-out of fibers, the better orientation of graphite layers, the sliding of sublayers, and the deflection and propagation caused by the transverse cracks.  相似文献   

19.
Carbon/carbon (C/C) composites have a wide application as the thermal structure materials because of their excellent properties at high temperatures. However, C/C composites are easily oxidized in oxygen-containing environment, which limits their potential applications to a great degree. Silicon carbide (SiC) ceramic coating fabricated via pack cementation (PC) was considered as an effective way to protect C/C composites against oxidation. But the mechanical properties of C/C composites were severely damaged due to chemical reaction between the molten silicon and C/C substrate during the preparation of SiC coating by PC. In order to eliminate the siliconization erosion, a pyrolytic carbon (PyC) coating was pre-prepared on C/C composites by the chemical vapor infiltration (CVI) prior to the fabrication of SiC coating. Due to the retardation effect of PyC coating on siliconization erosion, the flexural strength retention of the SiC coated C/C composites with PyC coating increased from 46.27 % to 107.95 % compared with the specimen without PyC coating. Furthermore, the presence of homogeneous and defect-free PyC coating was beneficial to fabricate a compact SiC coating without silicon phase by sufficiently reacting with molten silicon during PC. Therefore, the SiC coated C/C composites with PyC coating had better oxidation resistances under dynamic (between room temperature and 1773 K) and static conditions in air at different temperatures (1773?1973 K).  相似文献   

20.
Pyrocarbon (PyC) matrices were prepared in two kinds of quartz fiber preforms by chemical vapor infiltration (CVI), and then the fibers were leached by HF. Effects of CNTs on the microstructures and mechanical properties of the quartz fiber reinforced carbon composites and PyC matrices, as well as the interface behaviors of the fiber reinforced composites, were discussed. Randomly oriented CNTs reinforced PyC micro-composites account for the pseudo ISO structure and contribute to the mechanical properties of the PyC matrix. Relative strength between reinforcement and matrix and interface bonding significantly affect the mechanical behaviors of the quartz fiber reinforced pyrocarbon composites: Quartz fiber with low strength and strong interface bonding result in limited strengthening effect on flexural strength of the fiber reinforced composite; low strength unidirectional quartz fiber and weak interface bonding in a much stronger matrix result in limited strengthening effect on tensile strength of the composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号