首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
CaCu3-xCrxTi4O12 (x?=?0.00–0.20) ceramics were prepared via a polymer pyrolysis solution route. Their dielectric properties were improved by Cr3+ doping resulting in an optimal dielectric constant value of 7156 and a low tanδ?value of 0.092 in a sample with x?=?0.08. This might have resulted from a decrease in oxygen vacancies at grain boundaries. XANES spectra confirmed the presence of Cu+ ions in all ceramic samples with a decreasing Cu+/Cu2+ ratio due to an increased content of Cr3+ ions. All CaCu3-xCrxTi4O12 ceramics showed nonlinear characteristic with improvement in both the breakdown field (Eb) and its nonlinear coefficient (α). Interestingly, the highest values of α, ~ 114.4, and that of Eb, ~8455.0?±?123.6?V?cm?1, were obtained in a CaCu3-xCrxTi4O12 sample with x?=?0.08. The improvement of dielectric and nonlinear properties suggests that they originate from a reduction of oxygen vacancies at grain boundaries.  相似文献   

2.
The microstructural evolution, non‐Ohmic properties, and giant dielectric properties of CaCu3Ti4?xGexO12 ceramics (x=0‐0.10) are systematically investigated. The Rietveld refinement confirms the existence of a pure CaCu3Ti4O12 phase in all samples. Significantly enlarged grain sizes of CaCu3Ti4?xGexO12 ceramics are associated with the liquid phase sintering mechanism. Enhanced dielectric permittivity from 6.90×104 to 1.08×105 can be achieved by increasing Ge4+ dopant from x=0‐0.10, whereas the loss tangent is remarkably reduced by a factor of ≈10. NonOhmic properties are enhanced by Ge4+ doping ions. Using impedance and admittance spectroscopies, the underlying mechanisms for the dielectric and nonlinear properties are well described. The improved nonlinear properties and reduced loss tangent are attributed to the enhanced resistance and conduction activation energy of the grain boundaries. The largely enhanced permittivity is closely associated with the enlarged grain sizes and the increase in the Cu+/Cu2+ and Ti3+/Ti4+ ratios, which are calculated from the X‐ray absorption near‐edge structure.  相似文献   

3.
Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were prepared by the conventional solid-state reaction method. The phase composition, sintering characteristics, microstructure and dielectric properties of Ti4+ replacement by Nb5+ in the formed solid solution Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were systematically studied. The structural variations and influence of Nb5+ doping in Mg(Ti1-xNbx)O3 were also systematically investigated by X-ray diffraction and Raman spectroscopy, respectively. X-ray diffraction and its Rietveld refinement results confirmed that Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics crystallised into an ilmenite-type with R-3 (148) space group. The replacement of the low valence Ti4+ by the high valence Nb5+ can improve the dielectric properties of Mg(Ti1-xNbx)O3 (x = 0–0.09). This paper also studied the different sintering temperatures for Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics. The obtained results proved that 1350 °C is the best sintering temperature. The permittivity and Q × f initially increased and then decreased mainly due to the effects of porosity caused by the sintering temperature and the doping amount of Nb2O5, respectively. Furthermore, the increased Q × f is correlated to the increase in Ti–O bond strength as confirmed by Raman spectroscopy, and the electrons generated by the oxygen vacancies will be compensated by Nb5+ to a certain extent to suppress Ti4+ to Ti3+, which was confirmed by XPS. The increase in τf from ?47 ppm/°C to ?40.1 ppm/°C is due to the increment in cell polarisability. Another reason for the increased τf is the reduction in the distortion degree of the [TiO6] octahedral, which was also confirmed by Raman spectroscopy. Mg(Ti0.95Nb0.05)O3 ceramics sintered at 1350 °C for 2 h possessed excellent microwave dielectric properties of εr = 18.12, Q × f = 163618 GHz and τf = ?40.1 ppm/°C.  相似文献   

4.
In this work, the effects of Cu composition on the thermal stability of the dielectric and nonlinear properties of CaCu3+xTi4O12 (?0.2 ≤ x ≤ 0.2) ceramics obtained via a polymer-pyrolysis chemical process were studied. The mean grain sizes of Cu-stoichiometric (x = 0), Cu-deficient (x < 0) and Cu-excess (x > 0) CaCu3+xTi4O12 ceramics were found to be ~3.2, ~3.4 and ~3.7 μm, respectively. Interestingly, very good dielectric properties (0.020 ≤ tanδ ≤ 0.038 and 4000 ≤ ε′ ≤ 7065) were attained in CaCu3+xTi4O12 (?0.2 ≤ x ≤ 0.1, excluding x = 0.2) ceramics. Moreover, the variation of dielectric constant (ε′) within a limit of ±15% (Δε± 15%) over a wide temperature range (TR) of ?70 – 220 °C with low tanδ < 0.05 (tanδ<0.05) over a TR of ?70 to 80 °C were achieved in a CaCu2.8Ti4O12 ceramic. These results suggest that this ceramic could be applicable for X9R capacitors and energy storage devices that require high thermal stability. Additionally, the nonlinear properties of Cu-nonstoichiometric ceramics could be improved when compared with those of the Cu-stoichiometric material. The incremental changes of dielectric and nonlinear properties of CaCu3+xTi4O12 (?0.2 ≤ x ≤ 0.2) ceramics revealed the significant role of Cu composition on grain boundary resistance (Rgb), which was confirmed by impedance spectroscopy analysis. In addition, XANES results revealed the proper ratios of Cu+:Cu2+ and Ti3+:Ti4+ found in these ceramics, indicating the semiconducting behavior of these grains.  相似文献   

5.
《Ceramics International》2022,48(16):23428-23435
CaCu3Ti4O12-xwt%BiSbO4 ceramics (CCTO-xwt%BSO, x = 0, 1, 2, 3) were prepared by solid-state reaction method. The microstructure, dielectric properties, varistor properties, photoluminescence properties of CCTO-xwt%BSO ceramics were studied in this work. Results showed that all samples formed CaCu3Ti4O12 (CCTO) single phase. Doping BiSbO4 (BSO) restrained the abnormal grain growth and increased the grain boundary density of ceramics. The introduction of BSO led to the increase of the grain boundary resistance, reducing the dielectric loss and enhancing the temperature stability of dielectric properties. The nonlinear electrical characteristics are enhanced with proper concentration of BSO. And the improved varistor performance with breakdown electric field of ~3.98–34.6 and nonlinear coefficient of ~1.49–2.96 are obtained for CCTO-xwt%BSO samples. In addition, the photoluminescent emission of the samples is enhanced with the addition of appropriate equivalent BSO, showing the potential applications in novel devices with photoluminescent/electrical multifunctional properties.  相似文献   

6.
CaCu3Ti4O12 ceramics have been extensively studied for their potential applications as capacitors in recent years; however, these materials exhibit very large dielectric losses. A novel approach to reducing the dielectric loss tangent in two steps, while increasing the dielectric permittivity, is presented herein. Doping CaCu3Ti4O12 with a Zn dopant reduces the loss tangent of the ceramic material from 0.227 to 0.074, which is due to the increase in grain boundary (GB) resistance by an order of magnitude (from 6.3× 103 to 3.93 × 104 Ω cm). Zn-doping slightly changes the microstructure and dielectric permittivity of the CaCu3Ti4O12 ceramic, which reveals that the primary role of the Zn dopant is to tune the intrinsic properties of the GBs. Surprisingly, the addition of the Ge4+ dopant into the Zn2+-doped CaCu3Ti4O12 ceramic sample led to a further decrease in the loss tangent from 0.074 to 0.014, due to enhanced GB resistance (3.1 × 105 Ω cm). The grain size increased remarkably from 2–3 μm to 85–90 μm, corresponding to a significant increase in the dielectric permittivity (~1–4 × 104). The large increase in GB resistance is due to the intrinsic potential barrier height at the GBs and the segregation of the Cu-rich phase in the GB region. First-principles calculations revealed that Zn and Ge are preferentially located at the Cu sites in the CaCu3Ti4O12 structure. The substitution of the Ge dopant does not hinder the role of the Zn dopant in terms of improving the electrical properties at the GBs. These phenomena are effectively explained by the internal barrier layer capacitor model. This study provides a way of improving the dielectric properties of ceramics for their practical use as capacitors.  相似文献   

7.
Nonlinear current–voltage properties of CaCu3Ti4O12 ceramics were extremely enhanced by doping with Tb. Substitution of Tb to CaCu3Ti4O12 resulted in a decrease in grain size due to the ability of Tb ions to inhibit grain boundary mobility. The dielectric properties of CaCu3Ti4O12 ceramics were degraded after doping with Tb. Surprisingly, the nonlinear electrical properties were strongly enhanced. The best properties with a nonlinear coefficient of ~29.67 and breakdown electric field strength of ~1.52 × 104 V/cm were obtained in the Ca0.775Tb0.15Cu3Ti4O12 ceramic. These extremely enhanced properties were attributed to modification of grain boundary electrical response due to the effect Tb substitution.  相似文献   

8.
Giant dielectric behavior and electrical properties of monovalent cation/anion (Li+, F) co-doped CaCu3Ti4O12 ceramics prepared by a solid-state reaction route were systematically investigated. Substitution of Li+ and F led to a significantly enlarged mean grain size. A reduced loss tangent (tanδ ~0.06) with the retainment of an ultra-high dielectric permittivity (ε′ ~7.7-8.8 × 104) was achieved in the co-doped ceramics, while the breakdown electric field and nonlinear coefficient of CaCu3Ti4O12 ceramics were increased by co-doping with (Li+, F). The variations in nonlinear electrical properties and giant dielectric response, as well as the dielectric relaxation, were well explained by the Maxwell-Wagner polarization model for an electrically heterogeneous microstructure, in which a Schottky barrier height at the grain boundaries (GBs) was formed. ε′ was closely correlated to the GB capacitance. Significantly decreased tanδ value and enhanced nonlinear properties were related to a significant increase in the GB resistance, which was attributed to the significantly increased potential barrier height and conduction activation energy at the GBs. The semiconducting nature of the grains was also studied using X-ray photoelectron spectroscopy and found to originate from the presence of Cu+ and Ti3+ ions.  相似文献   

9.
《Ceramics International》2016,42(11):13242-13247
Considering the contribution of the mixed valence structure of Ti3+ and Ti4+ to the semiconductivity of grain, compositions with the formula of Y2/3Cu3Ti4+xO12 were designed and prepared. The dielectric bulk responses of Y2/3Cu3Ti4+xO12 ceramics were explored in detail. Changing Ti stoichiometry gives rise to an increase of the intrinsic permittivity. Y2/3Cu3Ti3.925O12 ceramic exhibits a higher intrinsic permittivity of ~120 at 60 MHz than that of pure Y2/3Cu3Ti4O12 ceramics (87 at 60 MHz). Additionally, the activation energies of bulk responses are significantly enhanced by changing Ti stoichiometry, which is closely linked with the increase of Ti3+/Ti4+.  相似文献   

10.
A novel strategy to improve the dielectric and non-Ohmic properties of CaCu3Ti4O12 ceramics that deliberately created a binary-phase system of CaCu3−xMgxTi4O12/CaTiO3 was proposed and can be performed with a starting nominal formula of Ca2Cu2−xMgxTi4O12. Mg2+ doping ions were preferentially incorporated only into the CaCu3Ti4O12 phase. Substitution of Mg2+ into CaCu3Ti4O12/CaTiO3 can cause a significant increase in dielectric permittivity and a large reduction of the loss tangent to <0.015 at 1 kHz; while, retaining excellent temperature dielectric-stability. Sintering time had a slight influence on the dielectric properties, but remarkable effects upon the nonlinear electrical properties of CaCu3−xMgxTi4O12/CaTiO3 ceramics. Degradation of nonlinear properties with increased sintering time is suggested to be the result of the dominant effect of oxygen vacancies. Impedance spectroscopy analysis demonstrated that improved dielectric and nonlinear properties could be attributed to the enhanced electrical responses of CaCu3Ti4O12–CaTiO3 and CaCu3Ti4O12–CaCu3Ti4O12 interfaces resulting from Mg2+ doping ions.  相似文献   

11.
CaCu3-xNixTi4O12 (x?=?0, 0.05, and 0.10) powders were synthesized using a solid state reaction method. Phase structure and microstructure analyses revealed that all sintered CaCu3-xNixTi4O12 ceramics were of a pure phase. The CaCu3Ti4O12 ceramics had a dense microstructure and grain sizes were enlarged by doping with Ni2+. Interestingly, the dielectric permittivity was significantly enhanced, whereas the loss tangent was greatly suppressed to ~0.046–0.034 at 1?kHz. All sintered ceramics exhibited non-Ohmic characteristics. Clarification of the influences of DC bias showed that the dielectric permittivity and loss tangent values were increased by DC bias. The resistance of grain boundaries and the associated conduction activation energy of CaCu3-xNixTi4O12 ceramics were reduced as the DC bias voltage increased. Therefore, the observed non-Ohmic behavior and significantly enhanced dielectric properties should be closely related to variation in the Schottky barriers at the grain boundaries.  相似文献   

12.
《Ceramics International》2023,49(1):134-144
The effects of the A-site transition from Ca2+ to Cd2+ on the microstructure, morphology, and electrical properties of Ca1–xCdxCu3Ti4O12 thin films were studied. The film surfaces are smooth, compact, and without cracks. The CaCu3Ti4O12 and CdCu3Ti4O12 films had similar morphologies and electrical properties. The grain size initially increased and subsequently decreased with the transition from Ca2+ to Cd2+ at the A site. The change in Ca sites has an obvious effect on Cu sites. The film with more copper-rich phases at the grain boundaries had the largest grain size when Ca2+ and Cd2+ equally occupied the A sites. The dielectric constant of Ca1–xCdxCu3Ti4O12 was closely related to the copper oxide secondary phase. The dielectric loss tangent and nonlinearity coefficient were associated with the compact structure, copper oxide secondary phase, copper vacancies and improved grain boundary response. The simultaneous occupancy of the A sites by Ca2+ and Cd2+ improves the dielectric and nonlinear properties of Ca1–xCdxCu3Ti4O12. Optimal dielectric properties (?r = 5238 and tan δ = 0.009 at 1 kHz) and an enhanced nonlinearity coefficient (~4.22) were simultaneously obtained for the Ca0.5Cd0.5Cu3Ti4O12 thin film. This study demonstrates that the extrinsic mechanism is the main origin of the high dielectric constant values in Ca1–xCdxCu3Ti4O12 films. The resulting films are suitable for applications in capacitors.  相似文献   

13.
《Ceramics International》2020,46(8):11474-11483
High permittivity Ba4(Pr1-xSmx)28/3Ti18-yAl4y/3O54(0.4≤x ≤ 0.7, 0≤y ≤ 1.5) ceramics were synthesized using a standard solid-state method. The effects of Sm3+ substitution into the A-site and Sm3+/Al3+ cosubstitution into the A/B-sites on the microstructure, crystal structure, Raman spectra, infrared reflectivity (IR) spectra and dielectric characteristics were investigated in a Ba4Pr28/3Ti18O54 solid solution. In the ceramic samples of Ba4(Pr1-xSmx)28/3Ti18O54(0.4≤x ≤ 0.7), Sm3+ partial substitution for Pr3+ could improve the quality factor (Qf) value and reduce the TCF value. Nevertheless, the quality factor (Qf~10,000GHz) needed further improvement and the TCF values (+12.3~+35.4 ppm/°C) were still too large. Therefore, Al3+ was introduced for further optimization of the TCF values and Qf values of the Ba4(Pr1-xSmx)28/3Ti18O54 ceramics. Sm/Al cosubstitution led to a good combination of high εr (εr ≥ 70), high Qf (Qf ≥ 12,000 GHz), and near-zero TCF (−10 < TCF < +10 ppm/°C) in a wide range (0.4≤x ≤ 0.7). Infrared reflectivity (IR) spectra indicated that A-TiO6 vibration modes gave the primary contribution rather than Ti–O bending and stretching modes. The decrease in the degree of B-site cations order could be confirmed by Raman spectra. XPS results demonstrated that the improvement of quality factor (Qf) value was strongly related to the suppression of Ti3+. Excellent dielectric properties were achieved in Ba4(Pr1-xSmx)28/3Ti18-yAl4y/3O54 microwave ceramics with x = 0.5 and y = 1.25: εr = 72.5, Qf = 13,900GHz, TCF = +1.3 ppm/°C.  相似文献   

14.
The crystal structure and microwave dielectric properties of Zn3-xCux(BO3)2 (x = 0–0.12) ceramics prepared via a traditional solid-state reaction method were investigated by means of X-ray diffraction (XRD) utilizing the Rietveld refinement, complex chemical bond theory, and Raman spectroscopy. XRD showed that all samples were single phase. The samples maintained a low permittivity, even at higher Cu2+ contents, which is conducive to the shortening of signal delay time, and intimately related to the average bond ionicity and Raman shift. Moreover, proper Cu2+ substitution greatly reduced the dielectric loss associated with the lattice energy. Cu2+ entering the lattice optimized the temperature coefficient of resonance frequency (τf) values and improved the temperature stability of samples by affecting the bond energy. Optimal microwave dielectric properties were: εr = 6.64, Q × f = 160,887 GHz, τf = ?42.76 ppm/°C for Zn2.96Cu0.04(BO3)2 ceramics sintered at 850 °C for 3 h, which exhibited good chemical compatibility with silver and are therefore good candidate materials for Low temperature co-fired ceramic applications.  相似文献   

15.
Dielectric and nonlinear properties of a binary compound derived from Ca2Cu2Ti4O12 were greatly improved by doping with Zn2+ to deliberately create CaCu3–xZnxTi4O12/CaTiO3 composites. Ca2Cu1.8Zn0.2Ti4O12 composition can exhibit an enhanced ε′, ~6,513, with a strong reduction in tanδ to ~0.015 (at 1 kHz). The nonlinear coefficient and breakdown field strength were significantly enhanced. The dielectric and nonlinear properties were described based on the effect of Zn2+ substitution on electrical response of internal interfaces.  相似文献   

16.
《Ceramics International》2021,47(23):33064-33069
In this paper, Mg2Ti1-xAl4/3xO4 ceramics (0.01 ≤ x ≤ 0.09) were synthesized through conventional solid-state ceramic route. The cubic spinel structure, microstructure and microwave properties of Mg2Ti1-xAl4/3xO4 (x = 0.01, 0.03, 0.05, 0.07, 0.09) ceramics were investigated by X-ray diffraction, Raman spectra, infrared spectra. Rietveld refinements confirm that a spinel structure phase with space group Fd-3m is formed. The variation of the permittivity was concerned with the ionic polarizability, and the value of τf was influenced by the bond valence. Both Q × f values and relative density showed an identical trend. Intrinsic properties of Mg2Ti1-xAl4/3xO4 ceramics were analyzed by infrared spectra and Raman spectra. In addition, the Mg2Ti1-xAl4/3xO4 ceramic sintered at 1420 °C for 4 h possessed optimal dielectric properties (εr = 14.65, Q × f = 182347 GHz, τf = −57.7 ppm/°C) when x = 0.09.  相似文献   

17.
《Ceramics International》2022,48(18):25705-25713
The colossal dielectric response of La-doped CaCu3Ti4O12 ceramics has been probed at room temperature for a frequency of 1Hz–20 MHz. In this work, the La-doped (CaCu3Ti4O12)x samples for x = 0.1, 0.2, and 0.3 have been sintered at 1100 °C using two different heating modes. SEM and EDS analysis investigated the microstructural chrysalis, grain size distribution, and the inhibitions of Cu-rich phase segregation into grain boundaries by the effect of La3+. The presence of main cubic single-phase of CCTO and the diminutive Bragg peak shift due to ion size effect of La3+ and Ca2+ have been identified by XRD for both conventional (CS) and microwave sintered (MWS) samples. XPS study revealed the effect of La3+ on the binding energies of Cu and Ti in CCTO. The dielectric properties namely dielectric constant (?), tan δ, and dielectric relaxation peaks were measured using BDS in which CS and MWS La-doped samples demonstrated (?) ~ >104 and ~ >103 along with low tan δ for x ≥ 0.1 at medium and high frequency (104–107Hz) than pure CCTO.  相似文献   

18.
Spinel Zn1‐xCuxGa2O4 (= 0‐0.15) ceramics were prepared by the conventional solid‐state method. Only a single phase was indexed in all samples. The continuous lattice contraction of ZnGa2O4 unit cell was caused by Cu2+ substitution, and the lattice parameter shows a linear correlation with the content of Cu. The refined crystal structure parameters suggest that Cu2+ preferentially occupies the octahedron site, and the degree of inversion of Zn1‐xCuxGa2O4 (= 0‐0.15) ceramics almost equals to the content of Cu2+. The relative intensity of A*1g mode in Raman spectra confirm that the degree of inversion climbed with the growing content of Cu2+. The experimental and theoretical dielectric constant of Zn1‐xCuxGa2O4 ceramics fit well. Zn1‐xCuxGa2O4 (= 0.01) ceramics sintered at 1400°C for 2 h exhibited good microwave dielectric properties, with εr = 9.88, Q × = 131,445 GHz, tanδ = 6.85 × 10?5, and τf = ?60 ppm/°C.  相似文献   

19.
《Ceramics International》2020,46(7):9240-9248
The effects of Sr2+ substitution for Ba2+ on phase structure, microstructure, dielectric and electric properties for Ba4-xSrxSmFe0.5Nb9.5O30 (x = 0, 1, 2, 3 and 4) ceramics were systematically researched. X-ray diffraction patterns show that Ba4-xSrxSmFe0.5Nb9.5O30 (x = 0, 1, 2 and 3) ceramics are tetragonal tungsten bronze compound with a space group of P4bm, while the sample for x = 4 is an orthorhombic structure compound. The result can be corroborated by the analysis of Raman spectroscopy. As the Sr2+ contents increase from 0 to 3, the full width at half maximum of Raman lines of all samples increase gradually, indicating that the degree of lattice distortion increase. All tetragonal tungsten bronze ceramics exhibited a broad permittivity peaks, accompanied by frequency dispersion, indicating all samples are relaxor. The electrical properties of BSSFN ceramics were further studied by complex impedance spectroscopy. XPS spectrum shows that Fe2+ and Fe3+ coexist in Ba4-xSrxSmFe0.5Nb9.5O30 ceramics, and their proportion varies with the concentration of Sr2+.  相似文献   

20.
Dielectric materials with ultrahigh permittivity are attracting attention due to the increasing demand for these types of materials for microelectronics and energy storage applications. In this work, we successfully synthesized Zn-doped CdCu3Ti4O12 (CdCTO) ceramics with low dielectric loss and large permittivity via an ordinary mixed-oxide technique. Remarkably, at a Zn doping level of 0.10, a CdCu2.9Zn0.1Ti4O12 ceramic exhibited both decreased dielectric loss tangent of ~0.058 and large dielectric permittivity > 4.0 × 104, as well as a good frequency stability over a wide frequency range from 40 Hz to 106 Hz. The high dielectric performance was attributed to the enhanced grain boundary resistance and internal barrier layer capacitor (IBLC) effect due to the fine and uniform grains that formed upon Zn doping. The findings reported in this work provide valuable insights into how to simultaneously realize a low dielectric loss and high permittivity in CdCTO and other related dielectric ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号