首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
Transparent electronics has attracted great research efforts in recent years due to its potential to make significant impact in many area, such as next generation displays, ultraviolet (UV) detectors, solar cells, charge-coupled devices (CCDs), and so on. Central to the realization of transparent electronics is the development of high performance fully transparent thin-film transistors (TFTs). One-dimensional (1-D) nanostructures have been the focus of current researches due to their unique physical properties and potential applications in nanoscale elec-tronics and optoelectronics. Among 1-D nanostructures, transparent metal oxide nanowires are one of the best candidates to make fully transparent TFTs. We provide in this paper the most recent development on the fabrication of fully transparent TFT using metal oxide nanowires as the device elements. First, the review article gives a general introduction about the development of transparent elec-tronics using different kinds of materials as the devices elements, including organic semiconductors, metal oxide thin films, and metal oxide nanowires. Second, the growth of metal oxide nanowires using vapor phase methods governed by two different growth mechanisms: vapor-solid mechanism and vapor-liquid-solid mechanism, respectively, are described. Third, the fabrication of transparent and flexible TFTs using different metal oxides nanowires is comprehensively described. In conclusion, the challenges and prospects for the future are discussed.  相似文献   

2.
Mesostructured wurtzite ZnS‐nanowire‐bundle/amine nanocomposites displaying remarkable quantum size effects are synthesized by using a mild‐solution reaction using different amines, such as n‐butylamine, ethylamine, and tetraethylenepentamine, Zn(NO3)2·6 H2O, and CS(NH2)2 or Na2S·9 H2O as the precursors at temperatures ranging from room temperature to 180 °C. A possible mechanism for the shape‐controlled growth of ZnS nanowires and nanocomposites is proposed. Increasing the reaction temperature or dispersing the composite in acetic acid or NaOH solution leads to the destruction of the periodic structure and the formation of individual wurtzite nanowires and their aggregates. The nanowire/amine composites and individual wurtzite nanowires both display obvious quantum size effects. Strong band‐edge emission is observed for the wurtzite ZnS nanowires after removal of the amine. The optical properties of these nanocomposites and nanowires are strongly related to the preparation conditions and can be finely tuned. This technique provides a unique approach for fabricating highly oriented wurtzite ZnS semiconductor nanowires, and can potentially be extended to other semiconducting systems.  相似文献   

3.
A simple, one‐step synthetic route to prepare ordered mesoporous silica monoliths with controllable quantities of metal oxide nanocrystals in their channels is presented. The method is based on the assisted assembly effect for mesostructure‐directing of the metal complexes formed by the interaction of metal ions with the –O– groups of copolymers. Highly ordered hexagonal silica monoliths, loaded with various metal oxide nanocrystals, including those of Cr2O3, MnO, Fe2O3, Co3O4, NiO, CuO, ZnO, CdO, SnO2, and In2O3, can be obtained by this one‐step pathway. In the NiO/SiO2 nanocomposite, nickel oxide nanorods with face‐centered cubic lattices are formed at low doping ratios, and they can be transformed into nanowires by increasing the quantities of the precursors. In the Fe2O3/SiO2 nanocomposites, a one‐dimensional assembly of iron oxide nanoparticles is observed. In the In2O3/SiO2 nanocomposites, single crystal nanowires with high aspect ratios are obtained. For the other metal oxide nanocomposites, including Cr2O3, MnO, Co3O4, CuO, ZnO, CdO, and SnO, only crystalline nanorods are obtained. N2 sorption results of the metal oxide/SiO2 mesostructured nanocomposites reveal that nanocrystals inside the pores do not severely decrease the pore volume or the Brunauer–Emmett–Teller (BET) surface area of the mesoporous silica host. The bandgaps of SnO2 and In2O3 nanocrystals, calculated from UV‐vis spectra, are much larger than the corresponding bulk materials, implying the quantum confinement effect in the small particles. Co3O4/SiO2 mesostructured nanocomposites catalyze the complete combustion of CH4. These studies provide a new and simple method for templating synthesis of metal oxide nanostructures.  相似文献   

4.
New materials based on carbon nanocrystalline material and metal carbon nanocomposites, which have specific properties and are promising for the use in the fabrication of electron and electrochemical sensor devices and catalysts, have been suggested for the development of electronics.  相似文献   

5.
Cobalt–polymer magnetic nanocomposites have been synthesized and characterized for their microstructure and properties such as permeability, permittivity, dielectric and magnetic losses from 100 MHz to 2 GHz to study their suitability as antenna dielectrics. Oxide-passivated cobalt nanoparticles were dispersed in epoxies to form nanocomposite toroids and thin-film resonator structures on organic substrates. Permeabilities of 2.10 and 2.65 were measured up to 500 MHz, respectively, with 25-nm to 50-nm and 5-nm nanoparticles in the nanocomposites. The loss tangent ranged from 0.02 to 0.04 at these frequencies. A combination of stable permeability of ~2 at 1 GHz to 2 GHz and permittivity of ~7 was achieved with nanocomposites having 5-nm nanoparticles. The magnetic nanomaterials described in this paper can overcome the limitations from domain-wall and eddy-current losses in microscale metal–polymer composites, leading to enhanced frequency stability. The paper also demonstrates integration of metal–polymer nanocomposites as thin-film build-up layers with two-metal-layer structures on organic substrates.  相似文献   

6.
针对自下而上生长GaN纳米线的尺寸、形态、取向不易控制的问题,文中采用自上而下刻蚀的方法来制备GaN纳米线材料。以图形化的金属Ni作为掩膜对GaN进行ICP刻蚀,系统研究了刻蚀参数,主要是ICP功率以及RF功率对GaN纳米线形貌以及拉曼、PL光谱的影响,同时也对比了干法刻蚀后,有无湿法处理的影响。研究发现,当ICP功率为1 000 W,RF功率为100 W时,GaN纳米线的拉曼和PL光谱强度较大,表明此功率下刻蚀的纳米线损伤较小。经过KOH浸泡30 min后,GaN纳米线的形貌得到了改善,拉曼和PL光谱强度均优于单纯的干法刻蚀,为下一步器件的制备提供了良好的材料基础。  相似文献   

7.
The intergrowth mechanism of silicon nanowires and silver dendrites formed by electroless metal deposition has been investigated by scanning electron microscopy. A self-assembled localized microscopic electrochemical cell model can adequately describe the self-organized Si nanowires growth. Using these in situ prepared Si nanowire arrays as templates, a diffusion-limited aggregation process is proposed to explain the formation of the silver dendritic nanostructures.  相似文献   

8.
直接氮化法制备单晶AlN纳米线   总被引:1,自引:0,他引:1  
采用直流电弧放电装置,通过金属铝和氮气直接反应,在钼阴极上沉积出大量的AlN纳米线。利用XRD、SEM、TEM和拉曼(Raman)光谱对所制样品的结构、形貌和光学特性进行了表征。结果表明:大部分AlN纳米线沿着[001]方向生长,平均直径为45nm,长度5μm左右;Raman光谱的峰值与单晶体材料AlN的结果一致,说明AlN纳米线结晶质量较好。  相似文献   

9.
We have grown GaN and AlGaN nanowires on Si (111) substrates with gassource molecular beam epitaxy (MBE). No metal catalysts were used. The nanowires displayed a number of interesting materials properties, including room-temperature luminescence intensity greater than that of free-standing HVPE-grown GaN, relaxed lattice parameters, and the tendency of nanowires dispersed in solvents to align in response to electric fields. The wires were well separated, 50–250 nm in diameter, and grew to lengths ranging from 2 μm to 7 μm. Transmission electron microscopy indicated that the wires were free of defects, unlike the surrounding matrix layer.  相似文献   

10.
激光烧蚀法制备半导体纳米丝的研究进展   总被引:2,自引:0,他引:2  
简要介绍了当前国内外激光烧蚀法制备半导体纳米丝的研究现状。介绍了目前激光烧蚀法制备的实验装置及所采用的激光束参数。比较了不同实验结果中在纳米丝结构和生长方向等方面的差异,并分析了半导体纳米丝生长的VLS金属催化机理和氧化物辅助生长模型,我们认为Si-金属混合物作靶时金属催化作用对纳米丝的生长起主要作用,而在Si-氧化物混合物作靶时,氧化物辅助作用将占主导地位。  相似文献   

11.
采用水热合成法将金纳米颗粒(AuNP)修饰到TiO2纳米管(TiO2NT)表面。用X射线衍射仪(XRD)和场发射扫描电子显微镜(FESEM)对制备的纳米复合材料进行表征。采用电化学阻抗谱(EIS)和循环伏安法分析了TiO2NT/AuNP纳米复合材料修饰的玻碳电极(GCE)。通过方波阳极溶出伏安法(SWASV)分析了纳米复合材料检测重金属离子的可行性。纳米复合材料对Pb(Ⅱ)、Cd(Ⅱ)、Hg(Ⅱ)和Cu(Ⅱ)具有较高的电分析活性和灵敏度,对Pb(Ⅱ)、Cd(Ⅱ)、Hg(Ⅱ)和Cu(Ⅱ)的灵敏度分别为15.63、213.19、287.86和72.75μA·μM-1(1 M=1 mol/L),检出限分别为0.052、0.004、0.003和0.011μmol/L。采用TiO2NT/AuNP纳米复合材料对多种重金属离子进行了检测。此外,TiO2NT/AuNP/GCE具有抗干扰性能和稳定性。因此,TiO2NT/AuNP纳米复合材料可适用于电化学传感器来检测多种重金属离子。  相似文献   

12.
多孔氧化铝由于具有纳米级的孔径、尺寸可调等独特的优点,成为合成纳米材料的一种常用模板.以多孔氧化铝为模板,制备出了纳米量级的纤维、纳米棒、金属管、半导体等新型材料.制备出了优良的多孔氧化铝有序孔洞阵列;以其为模板,采用直流电化学沉积的方法,在其规则排列的孔中沉积得到锌的纳米线;然后将其在高温下氧化,得到氧化锌的纳米线.利用X射线衍射谱、扫描电子显微镜等手段研究了它们的微结构性质,X射线衍射谱表明,用电化学沉积方法得到的锌和氧化锌纳米线均为多晶结构.  相似文献   

13.
Various epitaxial mechanisms have been proposed to control the growth orientation of vapor-deposited nanowires, yet the required lattice matching between target nanowires and supporting substrates limits their applicability. In this work, a versatile hot stamping protocol for fabricating parallel hydrophobic nanogrooves on flexible polymer films (e.g., polyimide (PI), polyethylene naphthalate (PEN), polydimethylsiloxane (PDMS)) is proposed. More interestingly, various organic small molecules, including several metal phthalocyanines (MPc, M = Cu, Zn, Fe, Ni, Co), 9,10-bis(phenylethynyl)anthracene (BPEA), 9,10-diphenylanthracene (DPA), and tris-(8-hydroxyquinoline)aluminium (Alq3), are directly assembled into horizontally-oriented nanowires along the hot-stamped nanogrooves on a flexible PI film, thereby breaking the lattice-matching limitation for oriented nanowire growth. These submillimeter-long horizontally oriented nanowires can be integrated into flexible photodetectors directly on their growth film, eliminating the need for laborious post-growth transfer and alignment steps and the associated structural damage and contamination. Consequently, the in situ integrated flexible photodetector made of aligned CuPc nanowires maintains a stable and fast photoresponse to a spectrum in the region of 405-980 nm even when the detector is bent to a radius of curvature of 2.5 mm and 1000 times. This work will open new opportunities to develop in situ integrated flexible devices based on organic crystalline nanowires for practical applications.  相似文献   

14.
Semiconductors - In a particular case of Au-catalyzed InxGa1 –xAs nanowires, wide compositional tuning has been obtained using metal organic vapor-phase epitaxy, which remains difficult for...  相似文献   

15.
Magnesium oxide(MgO) nanowires were synthesized on the gold-coated Si(100) and MgO(100) substrates at lower temperature(600℃) by pulsed liquid injection metal organic chemical vapor deposition(MOCVD). The gold catalyst could be found on the tips of nanowires, which presents the vapor-liquid-solid(VLS) growth mechanism. Reactive species(oxygen or magnesium) have strong effects on the growth of nanowires. Abundant reactive species kill the vertically aligned nanowires to be randomly aligned ones or even chan...  相似文献   

16.
The controllable growth processes of ZnO nanowires by evaporation of metal zinc with high purity and its luminescence properties have been investigated in detail. Firstly, the power of ZnO nanowires with high yield and homogeneous dimension was synthesized using the special quartz boat at 600 °C. Then, the oriented ZnO nanowires with about 20 nm diameter were synthesized by using a 90 nm-thick layer of ZnO nanocrystals on the Si substrate as the seed layer. Both fabrication processes are repeatable and no catalysts are necessary. Finally, photoluminescence (PL) spectroscopy for ZnO nanowires using an He-Cd laser line of 325 nm as the excitation source were measured at room temperature and both samples showed a sharp strong ultraviolet (UV) near-band edge emission. However, different UV peak positions (385 nm for ZnO nanowire powder, 377 nm for ZnO nanowire array) can be observed. The size confinement effect for excitons and carriers is proposed to explain the blue shift of the near-band edge emission with decreasing size and the native defects are responsible for the green emission.  相似文献   

17.
以多孔阳极氧化铝(AAO)为模板,采用直流电沉积的方法,制备了磁性金属Ni纳米线阵列。选用SEM、TEM、XRD等测试手段,对其微观形貌和结构进行了表征。结果表明:制得的Ni纳米线阵列排列规整、长度一致、直径与模板孔径基本一致,约为250nm,而且是结构紧密的多晶体。研究了电沉积时间对Ni纳米线长度的影响,发现电沉积时间应不超过15h。  相似文献   

18.
The transport properties of self-assembled guanosine supramolecules (SAGS) confined within nanoscale metal electrodes on transparent GaN semiconductor substrates have been studied. The modified guanosine molecules have been used as self-assembled nanowires to realize nanoscale UV-Visible photodetectors with self-assembly length ranging from 30 to 450 nm. The ribbon-like guanosine supramolecules exhibit semiconductor properties and have polarization along its axis due to the strong intrinsic dipole moment of guanosine molecules. The charge transport through the SAGS wire with nanoscale metal-semiconductor-metal structure on passivated Ga-terminated GaN surface can be explained by Schottky type conductivity and near-surface-states. The intrinsic polarization in SAGS nano-wires changes the band-offset at the metal-semiconductor interface similar to semiconductor photodiodes.   相似文献   

19.
This study reports the synthesis of extremely high aspect ratios (>3000) organic semiconductor nanowires of Ag–tetracyanoquinodimethane (AgTCNQ) on the surface of a flexible Ag fabric for the first time. These one‐dimensional (1D) hybrid Ag/AgTCNQ nanostructures are attained by a facile, solution‐based spontaneous reaction involving immersion of Ag fabrics in an acetonitrile solution of TCNQ. Further, it is discovered that these AgTCNQ nanowires show outstanding antibacterial performance against both Gram negative and Gram positive bacteria, which outperforms that of pristine Ag. The outcomes of this study also reflect upon a fundamentally important aspect that the antimicrobial performance of Ag‐based nanomaterials may not necessarily be solely due to the amount of Ag+ ions leached from these nanomaterials, but that the nanomaterial itself may also play a direct role in the antimicrobial action. Notably, the applications of metal‐organic semiconducting charge transfer complexes of metal‐7,7,8,8‐tetracyanoquinodimethane (TCNQ) have been predominantly restricted to electronic applications, except from our recent reports on their (photo)catalytic potential and the current case on antimicrobial prospects. This report on growth of these metal‐TCNQ complexes on a fabric not only widens the window of these interesting materials for new biological applications, it also opens the possibilities for developing large‐area flexible electronic devices by growing a range of metal‐organic semiconducting materials directly on a fabric surface.  相似文献   

20.
This article concerns the detailed investigations on the silver dendrite‐assisted growth of single‐crystalline silicon nanowires, and their possible self‐assembling nanoelectrochemistry growth mechanism. The growth of silicon nanowires was carried out through an electroless metal deposition process in a conventional autoclave containing aqueous HF and AgNO3 solution near room temperature. In order to explore the mechanism and prove the centrality of silver dendrites in the growth of silicon nanowires, other etching solution systems with different metal species were also investigated in this work. The morphology of etched silicon substrates strongly depends upon the composition of the etching solution, especially the metal species. Our experimental results prove that the simultaneous formation of silver dendrites is a guarantee of the preservation of free‐standing nanoscale electrolytic cells on the silicon substrate, and also assists in the final formation of silicon nanowire arrays on the substrate surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号