首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
木塑复合材料作为室外建筑装饰材料时,暴露在紫外光的照射下,易老化导致其力学性能降低、使用寿命减少。将具有高效紫外线屏蔽能力的金红石型纳米TiO2经硅烷偶联剂KH-570表面改性后,与木纤维(WF)、聚丙烯(PP)等制备了TiO2-WF/PP复合材料。对TiO2-WF/PP复合材料进行了人工加速紫外老化,并利用FTIR、TG、SEM、力学性能分析、颜色变化分析等手段,探究了纳米TiO2对WF/PP复合材料抗紫外老化的影响。结果表明:改性纳米TiO2粒子在WF/PP复合材料中均匀分散,无明显团聚,且其加入显著提高了复合材料的热稳定性;TiO2-WF/PP复合材料随着老化时间的延长,力学性能下降相对较小且颜色变化较小。当纳米TiO2的质量分数为2 wt%~3 wt%,老化2 000 h时后,TiO2-WF/PP复合材料的拉伸强度、冲击强度仅分别下降10.0%和12.6%;未加入纳米TiO2颗粒的WF/PP复合材料,则分别下降20.2%和22.6%。   相似文献   

2.
为进一步改善聚丙烯(PP)/木纤维(WF)复合材料的力学性能,采用几种不同类型的马来酸酐接枝型相容剂对PP/WF复合材料进行增容改性,并通过红外光谱和扫描电镜,分析和研究其增容机理。结果表明,PP-g-MAH的改性效果最为明显,当其添加量为m(PP-g-MAH)/m(WF)=10/100时,PP/WF复合材料的拉伸强度提高40.9%,弯曲强度提高47.3%,弯曲模量提高35.3%。PP-g-MAH使PP与木粉产生良好的增容效果,木粉颗粒被PP包裹,材料抵抗外应力以及材料破坏由发生在两相界面变成发生在材料整体,从而有效提高了复合材料的力学性能。  相似文献   

3.
为了研究无机刚性颗粒对通用塑料聚丙烯(PP)的力学性能的影响,采用熔融共混方法制备了经硅烷偶联剂A-151处理的SiO2/PP复合材料,并通过其缺口冲击、拉伸、弯曲试验和冲击断面的形貌观察,分析研究了微纳米SiO2颗粒大小、填充量、表面改性以及不同颗粒大小SiO2混合物对PP复合材料增韧、增强效果的影响.实验结果表明:纳米SiO2的加入可以同时改善其韧性、刚性和强度;填充量相同,颗粒越细,SiO2/PP复合材料的力学性能越好.SiO2经改性后填充到PP基体中,明显改善了颗粒在基体中的分散性及基体与颗粒之间界面结合性能,使复合材料的综合力学性能得到提高.不同颗粒大小的SiO2混合后填充到PP基体中,混合SiO2的协同效应使复合材料拉伸、弯曲性能进一步提高,对PP基体具有更好的增强效果,但其冲击性能下降.  相似文献   

4.
以乙烯基树脂(VE)为基体,竹纤维(BF)为增强材料,通过偶联剂KH602对纳米SiO2进行改性处理,并利用改性后纳米SiO2分别对竹纤维和树脂进行改性处理,采用真空辅助树脂传递模塑成型工艺(VARTM)制备了BF/VE复合材料。采用FTIR、SEM对改性后纤维和树脂的表面物理化学状态进行表征,结果表明:改性纳米SiO2成功化学接枝到竹纤维表面且分散到树脂基体中,改性纳米SiO2在BF1/VE0.5 (用1.0wt%改性纳米SiO2改性纤维和0.5wt%改性纳米SiO2改性树脂)复合材料中分散更为均匀;采用力学试验机和SEM对复合材料力学、断口和表面形貌进行分析,考察改性纳米SiO2的添加量对BF/VE复合材料力学性能、界面性能的影响。结果表明:BF1/VE0.5复合材料的拉伸、弯曲及冲击强度分别达到最大值49.0 MPa、70.6 MPa和150.4 J/m,与未处理的复合材料相比分别提高了18.9%、26.1%、70.7%。此外,还初步探讨了改性纳米SiO2的界面增强机制。   相似文献   

5.
通过双螺杆挤出机实现了高浓度硅溶胶、纳米二氧化硅分别与聚丙烯(PP)的熔融共混,制备了PP/高浓度硅溶胶和PP/纳米Si O2的复合材料。利用差示扫描量热、透射电镜、电子探针及力学性能测试分别分析了高浓度硅溶胶及纳米Si O2粉体的含量对PP结晶性能、分散性及力学性能的影响。结果表明,与纳米Si O2粉体相比,高浓度硅溶胶更加纯净,与PP共混不会引入杂质,且在PP中分散更均匀。高浓度硅溶胶与纳米Si O2粉体的加入,都能提高PP的拉伸、弯曲和缺口冲击强度,并使PP的结晶度增大和结晶温度升高,但高浓度硅溶胶改性PP优于纳米Si O2粉体。当高浓度硅溶胶添加量为3%时,PP复合材料的缺口冲击强度达最大值,为4.49 k J/m2,纳米Si O2添加量为3%时,PP的缺口冲击强度达最大值,为4.43 k J/m2。  相似文献   

6.
微纳米SiO2/PP复合材料增强增韧的实验研究   总被引:1,自引:0,他引:1  
为了研究无机刚性颗粒对通用塑料聚丙烯 (PP) 的力学性能的影响, 采用熔融共混方法制备了经硅烷偶联剂A-151处理的SiO2/PP 复合材料, 并通过其缺口冲击、 拉伸、 弯曲试验和冲击断面的形貌观察, 分析研究了微纳米SiO2颗粒大小、 填充量、 表面改性以及不同颗粒大小SiO2混合物对PP复合材料增韧、 增强效果的影响。实验结果表明: 纳米SiO2的加入可以同时改善其韧性、 刚性和强度; 填充量相同, 颗粒越细, SiO2/PP复合材料的力学性能越好。SiO2经改性后填充到PP基体中, 明显改善了颗粒在基体中的分散性及基体与颗粒之间界面结合性能, 使复合材料的综合力学性能得到提高。不同颗粒大小的SiO2混合后填充到PP基体中, 混合SiO2的协同效应使复合材料拉伸、 弯曲性能进一步提高, 对PP基体具有更好的增强效果, 但其冲击性能下降。   相似文献   

7.
MA-SEBS增容PP/SiO_2纳米复合材料的力学性能与结晶行为   总被引:1,自引:0,他引:1  
聚丙烯/二氧化硅(PP/SiO2)纳米复合材料具有优异的加工、力学、热稳定等性能。如何实现SiO2在PP基体中的均匀分散及提高两相的界面相容性是制备PP/SiO2复合材料的关键。文中利用马来酸酐接枝的氢化苯乙烯-丁二烯-苯乙烯嵌段共聚物(MA-SEBS)作增容剂,采用熔融共混和注塑成型的方法制备了PP/SiO2纳米复合材料;研究了MASEBS对PP/SiO2复合材料的力学性能、断面形貌及结晶行为的影响。结果表明:添加MA-SEBS显著提高了PP/SiO2复合材料的冲击强度,使SiO2在PP结晶过程中能更好地起到异相成核作用,提高了复合材料中PP相的结晶温度、降低了PP的球晶尺寸。  相似文献   

8.
首先利用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)对纳米SiO_2进行表面改性(SiO_2-MPS),再通过原位聚合法在SiO_2-MPS表面接枝聚甲基丙烯酸甲酯(PMMA)。采用熔融共混法将未改性和改性SiO_2与PMMA共混制成预分散母料,再分别与PMMA熔融共混制备纳米SiO_2/PMMA透明复合材料。用FTIR、TG和SEM对不同表面处理的纳米SiO_2和纳米SiO_2/PMMA复合材料的结构进行表征,并对其冲击强度、接触角和透光率进行表征。结果表明:SiO_2-MPS/PMMA复合材料中纳米SiO_2与MPS、MPS与PMMA间形成化学键,接枝率分别达到10.01%和22.95%,SiO_2-MPS-PMMA在PMMA中分散性最好,团聚现象明显减少,与纯PMMA相比,SiO_2/PMMA、SiO_2-MPS/PMMA和SiO_2-MPS-PMMA/PMMA复合材料的冲击强度、与水接触角均略有提升,透光率达到90%左右,最高可达94.2%。  相似文献   

9.
采用聚磷酸铵(APP)与纳米SiO_2阻燃水稻秸秆/高密度聚乙烯(HDPE)木塑复合材料,通过力学性能、极限氧指数、垂直燃烧、热重分析(TGA)和扫描电镜等研究了复合材料的界面,力学,阻燃性能及热降解行为。研究结果表明,当添加17%(wt,质量分数,下同)的APP与3%的纳米SiO_2时达到V-0级,极限氧指数提高了30.8%。拉伸强度提高了42.8%,弯曲强度提高51.9%,冲击强度提高了73.9%。TGA与SEM研究表明,APP与纳米SiO_2对木塑复合材料具有阻燃协效效应,APP使秸秆粉碳化同时膨胀发泡,纳米SiO_2加固炭层是阻燃的主要原因。  相似文献   

10.
为评价无机微/纳米粒子改性对碳纤维复合材料力学性能的影响,采用真空辅助树脂传递模塑成型(VARTM)工艺分别制备了[±45/0/90]_S铺层角度下纳米SiO_2、纳米Al_2O_3、微米SiO_2、微米Al_2O_3改性碳纤维环氧树脂基复合材料(CFRP)。对其横向拉伸、损伤阻抗及损伤容限性能进行测试,通过扫描电镜和水浸超声C扫描检测观察试件内部损伤状态,对比分析无机微/纳米粒子对复合材料的增韧机理。实验结果表明,相比未改性CFRP,无机微/纳米粒子改性CFRP的冲击损伤初始阈值能量显著提高,冲击损伤面积明显减小,纳米SiO_2改性碳纤维增强环氧树脂基复合材料(CF/EP/NSI)试件的横向拉伸断裂模式由单一的脆性断裂转为韧性断裂,最大冲击载荷和低速冲击后压缩强度(CAI)值达到了3484 N,62.4 MPa,相比未改性CFRP分别提升了30.4%,48.2%。[±45/0/90]_S铺层角度下试件的冲击损伤形状为花生状,冲击后压缩破坏模式为穿过中间损伤区域的压缩破坏(LDM)。  相似文献   

11.
PP-g-MAH对PP/SiO2纳米复合材料力学性能的影响   总被引:1,自引:0,他引:1  
为了进一步提高聚丙烯的力学性能,以马来酸酐接枝聚丙烯(PP-g-MAH)为聚丙烯/二氧化硅(PP/SiO2)纳米复合材料的界面相容剂,研究了PP-g-MAH添加量对PP/SiO2的力学性能、微观形态以及结晶行为的影响,并研究了其增容机理.研究表明:PP-g-MAH的加入使纳米PP/SiO2纳米复合材料的力学性能得以全面提高,使纳米二氧化硅与聚丙烯的界面粘结得到改善,并且,由于PP-g-MAH导致复合材料的界面强度提高和界面层厚度增加,使KH-570与PP-g-MAH并用的PP/PP-g-MAH/纳米SiO2复合材料比单用KH-570的PP/SiO2纳米复合材料的改性效果更加明显;PP-g-MAH对PP的结晶过程具有较明显的成核作用,使改性PP的结晶温度提高.  相似文献   

12.
通过熔融插层法制备了聚丙烯/蒙脱土(PP/MMT)纳米复合材料。利用X射线衍射(XRD)和透射电镜表征了PP/MMT纳米复合材料的插层结构。XRD结果表明,经过聚乙二醇(PEG)处理的蒙脱土层间距增大;透射电镜(TEM)照片显示,蒙脱土在PP基体中达到纳米级分散,且分散均匀。PP/MMT纳米复合材料力学性能得到较大提高。加入5份改性MMT时,复合材料的缺口冲击强度和断裂伸长率分别从纯PP的3.93kJ/m2、74.46%提高到9.95kJ/m2、220.66%。动态流变性能测试结果表明,MMT的加入降低了PP的复数黏度(η*)、储能模量(G′)和耗能模量(G″)。  相似文献   

13.
纳米二氧化硅(SiO_2)作为一种最常用的无机纳米材料,受到了各个领域研究者的广泛关注且已得到实际应用。以纳米SiO_2作为改性填料,得到的聚合物纳米复合材料兼具了聚合物基体和纳米SiO_2二者的优点,因而表现出优异的力学性能、热学性能、光学性能以及化学稳定性等。但是纳米SiO_2表面富含大量活性硅羟基,极易团聚,用一般方法难以实现其在纳米尺度上的均匀分散以及与高分子基体材料间良好的界面粘结。因此,在制备纳米SiO_2改性的聚合物基纳米复合材料前,研究者们常通过对SiO_2进行表面改性,以改善其与聚合物基体的界面相容性及其在聚合物基体中的分散性,并赋予其一定的功能性。目前,纳米SiO_2的改性方法有很多,总的来说主要为物理改性和化学改性,而根据改性剂的种类不同,又可以分为有机改性、无机改性和杂化改性三种。聚合物/纳米SiO_2复合材料的优异性能不仅取决于有机聚合物和无机纳米SiO_2两组分的性能,还取决于两者间的界面结构和形态特征。尽管界面相的体积含量只占总体积含量中很少的一部分,但是界面间的相互作用、界面处聚合物结构与基体结构的差异、界面相微观形貌的变化等都会使整个复合体系的宏观性能发生明显的改变。因而针对有机聚合物与无机纳米SiO_2间的界面研究对于纳米复合材料性能的优化设计具有重要的科学意义。近年来,关于聚合物与无机纳米粒子之间的界面研究主要集中在两个方面:一方面是聚合物及无机纳米粒子表面的物理、化学性质对界面处性能的影响;另一方面是聚合物基体与无机纳米粒子之间的界面相互作用对复合材料性能的影响。目前,常通过现代仪器分析技术测试界面相的微观形貌(如粗糙程度、厚度等)及化学结构(如化学键合方式、键能等),或结合分子动力学模拟阐明分子集合体结构以及相互间的微观作用机理,从理论角度更准确地解释界面性能和界面行为,为复合材料的优化设计提供理论基础和新方法。本文归纳了有机改性、无机改性和杂化改性三种方法在纳米SiO_2的功能化方面的研究进展,讨论并对比了不同改性方法的优势和缺点,较全面地综述了当前现代仪器分析表征和分子动力学模拟在聚合物/SiO_2界面作用研究方面的最新进展,最后展望了纳米SiO_2与聚合物基体界面作用未来研究的工作重点。  相似文献   

14.
通过溶胶-凝胶法自制纳米二氧化硅(SiO_2),并采用油酸对其进行改性,改性纳米SiO_2与环氧树脂充分混合,加入丙烯酸单体,制得改性纳米SiO_2/环氧-丙烯酸酯复合材料。复合材料经透射电子显微镜(TEM)、扫描电子显微镜(SEM)等表征和分析。实验结果表明,改性后的纳米SiO_2/环氧-丙烯酸酯复合材料的拉伸强度、冲击强度、拉伸模量等力学性能得以明显提高,当纳米SiO_2与环氧-丙烯酸酯复合材料的摩尔配比为3∶100时,改性纳米SiO_2/环氧-丙烯酸酯复合材料具有最佳的力学性能:冲击强度达到15.63kJ/m2,拉伸强度达到55.68MPa,拉伸模量达到3.67GPa;铅笔硬度达到2H、黏度明显提高达到125MPa·s;耐盐雾、耐水指标都有明显改善。  相似文献   

15.
樊星  陈俊林  王凯  肇研 《复合材料学报》2018,35(9):2397-2404
利用纳米SiO2改性聚苯硫醚(PPS)树脂及玻璃纤维(GF)/PPS复合材料,探究纳米SiO2对PPS树脂及GF/PPS复合材料性能的影响规律。采用熔融共混工艺制备纳米SiO2/PPS树脂,并采用热压成型方法制备纳米SiO2-GF/PPS复合材料,利用SEM、DSC、DMA和力学测试表征不同纳米SiO2含量的SiO2/PPS和SiO2-GF/PPS复合材料。结果表明:纳米SiO2通过熔融共混工艺能够均匀分散在PPS基体中,并提高PPS结晶度和弯曲性能。添加1wt%纳米SiO2有效提高了GF/PPS复合材料的力学性能:层间剪切强度提高49.4%,弯曲强度提高30.6%,弯曲模量提高14.6%。纳米SiO2的添加可以提高GF/PPS复合材料的玻璃化转变温度,同时纳米SiO2能够改善树脂基体韧性并阻碍裂纹的扩展。  相似文献   

16.
用原位分散聚合法制备了一系列Gd2O3/ME尼龙纳米复合材料,用SEM观察了Gd2O3纳米粒子在MC尼龙基体中的分散情况,用XRD研究了复合材料的晶体结构,并对复合材料的力学性能进行了表征.研究结果表明:(1)用原位分散聚合法制备Gd2O3//ME尼龙纳米复合材料是可行的,Gd2O3纳米粒子均匀分散在MC尼龙基体中,团聚情况较少;(2)GD2O3纳米粒子没有改变MC尼龙的结晶形态,但使其晶格尺寸发生了一定程度的改变;(3)纳米Gd2O3的加入可明显改善MC尼龙的力学性能,对MC尼龙同时具有增强和增韧双重效果.随着纳米Gd2O3用量的增加,复合材料的拉伸强度、断裂伸长率、缺口冲击强度、弯曲强度和弯曲模量都呈先升后降的趋势.当纳米Gd2O3用量为0.5%时,复合材料的综合性能最好,其拉伸强度、断裂伸长率、缺口冲击强度、弯曲强度和弯曲模量分别比MC尼龙基体提高19.6%、47.2%、19.7%、9.3%%和11.7%.  相似文献   

17.
采用聚乙烯醇(PVA)交联对洋麻(KF)增强聚丙烯(PP)、棕榈(PF)增强聚丙烯(PP)复合材料进行改性,通过模压成型工艺制备KF/PP和PF/PP复合材料。研究不同交联方法对复合材料的结构和性能的影响,采用SEM、DMA等技术研究了改性对复合材料的界面结合及力学性能影响。结果表明:PVA协同偶联剂交联改性对天然纤维/PP复合材料的综合改性效果最好,当用5%PVA+3%偶联剂对KF/PP改性时,KF/PP复合材料的弯曲强度提升25.2%,弯曲模量提升35.49%,剪切强度提升28%,分别达到了50.90 MPa、5.76 GPa、5.4MPa。当用5%PVA+2%偶联剂对PF/PP改性时,PF/PP复合材料的弯曲强度提升31.46%,弯曲模量提升27.07%,剪切强度提升21.75%,分别达到44.33MPa、2.32GPa、5.18MPa。改性后KF/PP、PF/PP复合材料的含水率分别下降了46.89%、10.63%,吸水率分别下降了8.57%、6.12%。KF/PP改性后储能模量提高20.93%,PF/PP改性后Tg值由90.1℃上升到113.8℃。SEM表明:PVA协同偶联剂交联改性有效改善了纤维与PP间的粘结,纤维与PP间的界面结合得到改善。  相似文献   

18.
以改性介孔硅为主要补强剂,聚丙烯(PP)为基体树脂,环氧大豆油(ESO)为增塑剂和稳定剂,通过熔融挤出注塑方法制备了改性介孔硅-ESO/PP体系复合材料。通过XRD、SEM、光学显微镜(OM)、偏光显微镜(PLM)及力学性能测试对介孔硅与ESO增强增韧PP的机制进行分析。结果表明:改性介孔硅、ESO二者同时填充PP制备改性介孔硅-ESO/PP复合材料时,三者界面以物理交联或化学接枝的结合方式形成了空间网状结构,改性介孔硅均匀分散在PP基体中;改性介孔硅添加量一定时,随ESO用量增加,改性介孔硅-ESO/PP复合材料弯曲强度稍微下降,但抗冲击强度、硬度都得到提高,当改性介孔硅用量为20%(与PP的质量比)、ESO用量为2.5%(与PP的质量比)时,综合性能较好。改性介孔硅本身的高模量及粒子在聚合物熔体中的异向成核促进了基体树脂结晶,以及良好的界面结合及分散性,这是增强的主要原因。ESO分子插入聚合物分子链间,削弱了聚合物分子链间的移动性,一定程度降低了基体结晶度等是增韧的主要原因。改性介孔硅使α晶型PP转变为具有更高冲击强度β晶型PP,与ESO二者协同作用,能增强增韧,但是过多的ESO使介孔硅粒子集中在材料的表面,导致其表面硬度增大。  相似文献   

19.
采用超声分散、机械剪切搅拌和纳米SiO_2粒子表面处理等多种分散工艺,制备了纳米SiO_2/环氧树脂复合材料。采用SEM、电子拉力机、粘弹谱仪和脉冲声管测试系统分别研究了纳米SiO_2/环氧树脂复合材料的微观结构、拉伸性能、动态力学性能和水声性能。结果表明,超声波分散法以及预处理法能够将纳米SiO_2粒子均匀分散在环氧树脂基体中,并且SiO_2粒子呈纳米尺度分布在环氧基体中。相对纯环氧树脂材料,纳米SiO_2/环氧树脂复合材料的拉伸强度提高了5%—30%,伸长率提高了2%—14%;储能模量随纳米SiO_2粒子的加入与均匀分散而提高,损耗因子则略有下降;吸声系数相对纯环氧树脂材料提高了6—10倍;而且纳米SiO_2/环氧树脂复合材料的常规力学性能、动态力学性能以及水声性能受纳米粒子的分散效果影响明显,分散越均匀,变化越大。  相似文献   

20.
功能性光致变色木塑复合材料(PWPC)使用寿命通常较短,因此本研究将抗氧剂1010和光稳定剂770引入到PWPC中,以改善复合材料的力学和耐光疲劳等性能。采用熔融共混法制得杨木粉/聚乳酸(WF/PLA)基光致变色复合材料,通过熔融沉积技术(FDM)打印成型,对制备的WF/PLA复合材料力学、界面相容性、热稳定性和耐光疲劳性能进行分析表征。与WF/PLA复合材料相比,当只添加抗氧剂1010时,WF/PLA复合材料拉伸、弯曲和冲击强度分别提高了42.58%、23.25%、6.52%;只添加光稳定剂770时,WF/PLA复合材料拉伸强度提高,弯曲强度和冲击强度均下降。当抗氧剂1010与光稳定剂770以质量比为1∶1添加到WF/PLA复合材料中时,在这两种助剂的协同作用下,WF/PLA复合材料的拉伸强度提高了1.8%,弯曲和冲击强度分别减小了9.3%和22.1%,相比于其他复配体系样品,力学性能降低幅度最低。此外,与WF/PLA复合材料相比,抗氧剂1010与光稳定剂770质量比为1∶1的WF/PLA复合材料的热降解性能和耐光变疲劳性能得到改善,质量损失为5%时的温度为219.84℃。老化第10天,其表面颜色变化值ΔE由5.3增至6.7,增加了26.7%。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号