首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
为了提高直驱型永磁同步风力发电机的低电压穿越能力,通过对其在电网电压不对称故障下产生的2倍工频分量机理进行分析,提出了一种基于超级电容储能系统的新型改进控制策略。基于功率平衡的思想,直流侧采用超级电容储能系统,并改用功率外环电流内环的控制策略,以实现不对称故障时堆积在直流侧不平衡功率的平滑控制。同时,在网侧采用双二阶广义积分器锁相环替代传统方法中的单相锁相环,实现不对称故障时正负序基波分量的精确测量。通过Matlab/Simulink仿真表明,该控制策略能有效抑制系统在不对称故障时的网侧有功和直流侧电压二倍频波动,提高系统在不对称故障下的低电压穿越能力,证明了所提出改进控制策略的有效性。  相似文献   

2.
为避免电网非对称故障时直驱永磁风电机组发生脱网事故,分析了电网电压不对称跌落时机、网侧能量不平衡引起直流链电容电压骤升的机理,提出了一种并联超级电容储能与序分量协调控制策略。考虑了电网非对称故障时电压的跌落程度、传动系统的储能限度和变流器的约束条件,通过对机、网侧变流器进行双闭环控制,实现快速平衡母线有功功率,同时补偿无功以改善电网电压。根据超级电容器寿命等影响因素选取电容容量,采用DC-DC变换器对超级电容的储能模式进行控制,限制故障阶段直流链支撑电容的电压。仿真结果表明了控制策略的有效性,提高了直驱永磁风电系统非对称故障的穿越能力和运行稳定性。  相似文献   

3.
为提高直驱永磁风电机组的高电压穿越(HVRT)能力,在分析电网电压骤升对直驱风机影响的基础上,提出了一种含超级电容储能的HVRT控制策略。在高电压故障期间,一方面利用超级电容储能吸收直流侧不平衡能量,稳定直流侧电压;另一方面优化网侧变流器控制策略,使之优先输出感性无功功率对故障电网进行无功支撑。在Matlab/Simulink环境中搭建系统仿真模型,对电网电压骤升下传统直驱机组控制策略的动态响应及所提的控制策略进行仿真分析。结果表明,含超级电容储能的HVRT控制策略可以有效提高直驱机组的高电压穿越能力。  相似文献   

4.
超级电容储能系统在风电系统低电压穿越中的设计及应用   总被引:2,自引:0,他引:2  
风电并网导则要求并网型风电机组具备低电压穿越能力,而传统基于直流母线卸荷电阻的低电压穿越方案以热能的形式消耗机组多余功率,降低机组效率,升高环境温度,增加了机组散热设计的难度。鉴于此,针对鼠笼型全功率风电变流器机组,提出一种基于超级电容储能装置的低电压穿越方案。利用超级电容器固有的快速充放电特点,实现低电压故障过程中风电机组波动功率的控制;给出了超级电容储能装置的详细设计方案以及低电压穿越过程中网侧变流器、机侧变流器以及超级电容储能装置的协调控制方法,并对系统暂态控制中的切换问题进行详细阐述。仿真与硬件在环实验结果验证了参数设计方法及提出控制策略的正确性。  相似文献   

5.
飞轮储能系统应用于微网的仿真研究   总被引:1,自引:0,他引:1  
微网中的风力、光伏发电等微型电源随机性强、输出功率波动大,微型电源功率不足,微网抗扰能力弱,由并网状态转入孤岛运行时需切除大部分负荷甚至全部负荷.采用飞轮储能系统辅助的微网方案,利用飞轮储能系统大功率充放电及充放电次数无限制的特点,设计并网逆变器的定功率控制方法.通过网侧功率测量决定并网逆变器的输出电流,实现了平抑微型电源功率和负荷波动的功能.在主电网故障时,飞轮储能系统向微网短时提供大量功率,维持大部分负荷等待主电网重合闸.通过理论分析及仿真实验表明,在微网中应用飞轮储能系统是可行的、经济的、高效的,可提升微网的抗灾变能力.  相似文献   

6.
全功率变速水力发电机组是水力发电机组变速运行主要方式之一,能更快速度响应电网功率变化需求,对间歇性与随机性强的新能源消纳具有重要意义,其机组的低电压穿越能力是保障机组稳定并网运行的关键。提出了一种基于机组转子储能的低电压穿越控制策略,充分利用水力发电机组转子储能能力强和机组输入功率可以调节的特点,采用转子储能和调速器调节吸收控制电网电压跌落期间的机组不平衡能量,并根据电网电压跌落幅值通过网侧变流器向电网提供无功电流支撑。建立了系统各部件的数学模型,通过仿真比对了提出的控制策略与传统的策略,仿真结果表明提出的控制策略能有效抑制直流母线过电压,并向电网提供无功电流支撑,提高了全功率变速水力发电机组的低电压穿越能力。  相似文献   

7.
基于超级电容的光伏并网低电压穿越控制策略研究   总被引:2,自引:0,他引:2       下载免费PDF全文
针对光伏系统在电网扰动或故障时突然脱网给电网带来严重后果,对基于超级电容的光伏并网系统的低电压穿越控制策略进行研究。在电网电压跌落时,通过控制超级电容吸收有功功率,平衡直流母线电压,减少光伏阵列注入逆变器的功率,防止逆变器过流。同时保证了逆变器的无功电流输出能力,支撑电网电压,实现系统的低电压穿越。利用系统仿真模型进行验证,结果表明该方法提高了光伏并网的低电压穿越能力,在保证光伏系统安全运行的同时,大大提高了无功支撑能力,稳定了电网电压,利于故障恢复。  相似文献   

8.
并网逆变器在传统低电压穿越控制中存在有功功率指令不明确,易受直流电压外环控制参数影响的问题。此外两级式光伏并网系统中前级DC-DC变换器根据直流母线电压波动情况被动调整光伏输出功率,导致光伏侧动态响应速度较慢。提出了一种结合超级电容的两级式光伏并网系统不对称故障低电压穿越控制策略,该策略重点关注低电压穿越期间光伏侧的输出特性,可根据逆变器的输出能力计算其可输出的最大有功功率,利用直流母线两端的超级电容变换器稳定母线电压,光伏升压变换器用于控制光伏功率出力以快速与逆变器有功功率出力匹配。仿真结果表明,在不对称故障下,所提方法可在稳定直流母线电压的同时,实现光伏侧输出功率的快速调节。  相似文献   

9.
在高渗透率的新能源并网系统中,由于光伏发电系统以及负荷的随机波动性,传统的跟网型控制在电网电压下降时往往难以提供足够的动态无功支撑,从而对系统的安全性和稳定性产生严重影响。为此,针对光储系统短路故障下电压源型变流器(voltage source converter, VSC)跟网、构网及故障期间的电压支撑控制方法进行研究。首先,建立VSC跟网、构网型控制策略的数学模型,分析基于跟网、构网型控制策略的并网控制方法;其次,研究采用2种不同控制策略对公共连接点(point-of-common coupling, PCC)电压的影响,提出基于跟网-构网型控制策略的系统控制方案,分析不同控制策略对PCC电压支撑作用的差异;再次,搭建计及光储接入的系统电磁暂态仿真模型,评估光伏逆变器和储能变流器采用3种不同控制方案对系统动态特性的影响;最后,对3种不同控制方案下,系统发生故障后PCC电压支撑程度进行分析,验证了所提出的基于储能变流器构网型及光伏逆变器跟网型一体化控制方法在故障期间具有更好的电压支撑能力。  相似文献   

10.
王鹏  李方媛  胡阳  郭浩  朱琳 《电机与控制应用》2021,48(2):64-70,75
针对传统双馈风电机组(DFIG)低电压穿越(LVRT)能力不足问题,提出了储能型双馈风电场联合STATCOM的无功协调控制。该控制是在网侧变流器(GSC)原有的模型上将超级电容经隔离型DC/DC变换器并联到风机直流侧,以此吸收故障期间直流侧产生的不平衡功率;在发生低电压故障时,根据超级电容投入情况,对两侧变流器和并联在风机出口母线上的STATCOM进行无功协调控制来支撑电网电压;同时超级电容储能装置采用电压电流双闭环控制,满足了系统稳定性和经济性的要求。仿真结果表明:该方法应用在风电并网系统中可以使DFIG的LVRT能力得到极大的提升。  相似文献   

11.
光伏直流升压汇集场站中,光伏列阵经DC/DC升压后汇集,再由DC/AC换流站逆变后接入交流电网。对于多个光伏直流升压场站并网系统,并网DC/AC换流站输出无功电流大小受自身容量与端口电压跌落程度影响,在协调机制不明确情况下,无功整定困难,靠近故障的场站存在脱网风险。为此,在分析各DC/AC换流站无功出力对端口电压影响的基础上,提出了光伏直流升压场站并网系统整体协同低电压穿越控制策略。进入低穿后,DC/AC换流站检测本地端口电压,立即向电网注入无功进行支撑;总控站利用通信获知各换流站的端口电压,进而协调各换流站的无功电流输出额度。同时,在分工况细化协调机制的基础上,对DC/AC换流站无功电流输出进行通用化整定。仿真结果表明,所提控制策略在交流电网发生故障时,能有效协调各DC/AC换流站进行无功补偿,提高系统整体低电压穿越能力。  相似文献   

12.
架空线MMC-HVDC是大规模风电友好型并网和可靠送出的有效手段。针对架空线故障率高的问题,采用对称双极接线方式和具备故障阻断能力的混合型MMC是其主要解决方案之一。基于此方案提出了风电经双极混合型MMC-HVDC并网的直流故障穿越协调控制策略。通过混合型MMC零直流电压控制实现了故障电流的有效阻断,并维持了故障极MMC对交流电压的支撑能力。基于对称双极接线方案运行方式灵活的特点,根据故障极功率能否被非故障极完全吸收,分别提出了自吸收和非自吸收工况下非故障极MMC的控制策略及其参数调整原则。并基于风电场频率响应能力设计了无需通信的精确减载控制策略,以实现非故障极MMC满载运行,在维持系统安全稳定运行的同时降低对受端交流系统的影响。最后,基于Matlab/Simulink搭建并网系统模型,验证了所提直流故障穿越协调控制策略的有效性。  相似文献   

13.
传统低电压穿越控制下,两级式光伏并网系统的前级和后级变换器控制相互独立。因此前级变换器需要根据直流母线电压波动被动地调整其输出功率,动态响应速度较低。针对这一问题,提出了一种基于有功功率指令共享的两级式光伏并网系统低电压穿越控制策略。该策略可以根据网侧电压降落深度动态调整后级变换器的有功功率指令,同时使光伏阵列根据该有功功率指令主动调整输出功率,保持直流母线电压恒定。通过仿真和实验将所提控制策略与现有的低电压穿越控制策略进行对比分析,结果表明:所提控制策略下光伏阵列的输出电压、电流的波动明显减小,且2台变换器输出功率动态响应加快,验证了所提控制策略的有效性。  相似文献   

14.
电网故障下交流励磁双馈风力发电机变流器建模与控制   总被引:1,自引:0,他引:1  
双脉宽调制(PWM)电压型变换器作为交流励磁双馈风力发电机的励磁电源,在风力发电系统得到广泛应用.电网故障时,要求网侧变换器直流链电压波动较小和转子侧变换器能有效控制转子电流,来实现发电机的不间断运行.以双PWM变换器的数学模型为依据,在电网故障时,将网侧变换器以转子侧变换器瞬时输入电流波动为附加前馈量的双环电压控制策略,转子侧变换器考虑定子磁链暂态的定子磁链定向控制策略.仿真结果表明了所提出的联合控制方案在电网故障发生和切除时能稳定控制直流链电压和转子电流,提高了DFIG风力发电系统电网故障下的不间断运行能力.  相似文献   

15.
永磁直驱风电机组故障穿越优化控制策略研究   总被引:6,自引:1,他引:5       下载免费PDF全文
永磁同步发电机构成的直驱型变速恒频风力发电系统通过全功率变流器与电网连接,当电网发生严重故障时,不仅对HVDC设备造成损害,甚至可能影响风力发电系统的整体安全稳定运行。对系统故障期间直流电压失稳的机理进行了分析,基于永磁同步发电机转子的惯性储能特性以及网侧换流器的无功补偿能力,提出一种适用于提高永磁直驱风电机组故障穿越能力的优化控制策略。在网侧故障期间通过分段式转速控制调整风机侧输入的有功并对网侧无功进行补偿,减小了中间直流系统注入的不平衡功率,抑制了故障期间直流电压的骤升。应用PSCAD/EMTDC电磁暂态仿真软件建立单机系统模型,仿真结果验证了所提出的控制策略的有效性。  相似文献   

16.
电网故障易造成并网风电场内风力发电机端电压骤变进而导致风力发电机跳闸,威胁风电场的安全运行.提出一种基于模型预测控制(Model Predictive Control,MPC)的风电场故障穿越有功无功优化控制策略.首先,基于下垂控制,根据并网点(Point of Common Coupling,PCC)电压得出故障下的...  相似文献   

17.
模块化多电平换流器(modular multilevel converter, MMC)可用作大容量风电机组的换流器,其具有良好前景,但需要解决风电机组低电压故障时易脱网运行的问题。鉴于此,提出了一种基于超级电容储能的低电压穿越策略。考虑超级电容的利用效率和变流器的约束条件,通过DC-DC变换器对超级电容的储能模式进行控制,实现故障期间机、网侧的功率平衡,以稳定直流侧母线电压。按照海上风电场规定,确定了故障期间网侧MMC有功无功电流分配原则,向电网提供动态无功以帮助恢复电网电压。仿真结果表明,当并网点发生故障时,所提策略不仅能较好地稳定直流母线电压,保障了MMC功率器件安全运行,还可以补偿无功以改善电网电压,提高了大容量直驱风电机组的故障穿越能力和运行稳定性。  相似文献   

18.
光伏并网发电系统的低电压穿越控制策略   总被引:8,自引:0,他引:8       下载免费PDF全文
为提高光伏并网发电系统的低电压穿越能力,提出一种基于电压定向矢量控制的低电压穿越(Low Voltage Ride-Through,LVRT)控制策略。该策略对光伏逆变器进行电压定向矢量控制,实现有功和无功功率解耦,在电网电压跌落期间,采用直流卸荷电路稳定直流侧电压,根据电压的跌落深度补偿一定的无功功率以支撑电压恢复。通过PSCAD/EMTDC软件对采取LVRT控制策略前后的各电气量进行比较分析,结果表明,采用该策略光伏发电系统可以在电压跌落时保持并网运行,并补偿一定的无功功率以恢复并网点电压,实现低电压穿越。  相似文献   

19.
由高压直流输电系统换相失败引起的送端风电场母线低高电压连续故障,会对双馈感应发电机(DFIG)产生严重的暂态冲击,现有单一的风机低压、高压故障穿越方案难以完全适应此类连续故障穿越的要求。为此,提出了一种结合重构式网侧变流器与超导磁储能装置的软硬件协同穿越方案,以提升DFIG的连续故障穿越能力。在故障期间,网侧变流器由并联运行模式切换至串联运行模式,以维持定子端电压不变为目标,并控制转子侧变流器根据并网点电压自适应发出动态感性/容性无功电流。仿真结果表明,所提方案既可以维持DFIG的机端电压,又可以为电网提供无功支撑,有效地实现DFIG的低高电压连续故障穿越。  相似文献   

20.
电网短路时交流励磁风电机组网侧变换器控制策略   总被引:5,自引:2,他引:3  
电网短路故障时交流励磁用双脉宽调制(PWM)变换器应提供足够的励磁电压实现交流励磁发电机的不间断运行,要求双PWM变换器直流链电压在故障时波动较小。分析并提出一种电网短路故障时交流励磁风电机组电网侧变换器的控制策略,该方案在电压跌落时仅利用电流内环控制电网侧变换器,并于电压正常时采用带前馈的双闭环电压控制策略控制电网侧变换器。通过仿真验证了所提出的方案在电网短路故障发生和切除时稳定控制直流链电压的有效性,为故障过程发电机不脱网励磁控制奠定了基础,同时该方案也能有效保护直流侧电容及提高系统的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号