首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过改进的Hummer法制得氧化石墨烯(GO),而后通过静电自组装,将GO与经过多巴胺修饰的纳米ZrO_(2)粒子制得杂化纳米粒子ZrO_(2)-GO,最后通过原位聚合法制得ZrO_(2)-GO/酚醛树脂(PF)复合材料,对有关产物进行了结构表征和性能测试。结果表明:适量引入杂化纳米粒子,可明显改善PF的弯曲、冲击、摩擦性能和热稳定性,当杂化纳米粒子的质量分数为1.0%时,复合材料的弯曲强度、弯曲模量、冲击强度分别达到最大值78.75 MPa、3.88 GPa和14.74 kJ/m^(2),比PF分别提高了73.57%,52.75%和115.3%。当杂化纳米粒子质量分数为1.5%时,复合材料的摩擦系数降至0.92,比PF降低了26.9%。引入杂化纳米粒子后,PF的玻璃化温度、分解温度、残炭率均明显提高。  相似文献   

2.
首先通过改进的Hummer法制得氧化石墨烯(GO),然后通过表面改性和化学还原制得功能化石墨烯(FRGO),最后通过原位聚合法制得FRGO/酚醛树脂(PF)复合材料,对有关产物进行了表征和测试。结果表明:适量引入FRGO,可明显改善PF的力学性能、摩擦性能和热稳定性;当FRGO质量分数为1.0%时,复合材料的弯曲强度、弯曲模量和冲击强度均达到最大值82.34MPa、3.84GPa和13.12kJ·m-2,分别比PF提高了81.48%、51.18%和99.39%;当FRGO质量分数为1.5%时,复合材料的摩擦系数降至0.91,比PF降低了27.7%;引入FRGO后,PF的玻璃化转变温度、分解温度和残炭率均明显提高。  相似文献   

3.
陈师岐  王选伦 《中国塑料》2021,35(10):56-59
采用熔融共混法制备了无规共聚聚丙烯/纳米二氧化硅(PP?R/SiO2)复合材料,并通过电子万能拉伸试验机、差示扫描量热仪(DSC)、偏光显微镜(PLM)和扫描电子显微镜(SEM)等对复合材料的力学性能、结晶热力学、结晶形态和微观形貌进行了表征。结果表明,加入纳米SiO2可以提高PP?R的结晶温度及熔融温度,使之从纯PP?R的93 ℃和141.6 ℃提高到105.6 ℃和142.8 ℃;纳米SiO2在复合材料中起到异相成核的作用,可以提高结晶速率并细化晶粒,从而提高复合材料的冲击强度;当纳米SiO2含量为2 %(质量分数,下同)时,复合材料在-15 ℃下的冲击强度达到最大,较纯PP?R提高了2倍多;当纳米SiO2含量为1 %时,复合材料在23 ℃下的冲击强度达到最大,较纯PP?R提高了近2倍;同时,复合材料的弯曲强度、拉伸强度和断裂伸长率也有所提升。  相似文献   

4.
酚醛树脂/凹凸棒土纳米复合材料的制备与表征   总被引:1,自引:0,他引:1  
凹凸棒土(AT)经过提纯,在超声作用下分散在酚醛树脂(PF)溶液中,浇铸固化得到PF/AT纳米复合材料。用SEM、TEM、TGA、DMA等测试手段对所得复合材料性能进行表征。结果表明:AT的加入使酚醛树脂的韧性及耐热性有明显的提高,当AT质量分数为1%时,复合材料的拉伸强度达到最大值为45.86MPa,且复合材料的冲击强度由9.02kJ/m2提高到10.80kJ/m2。DMA结果表明:复合材料的储能模量较纯PF有显著提高,且当AT质量分数为2%时,玻璃化转变温度为230℃,比纯PF的高93℃。TGA表明:复合材料的分解温度较纯PF有所提高。  相似文献   

5.
在传统的丙烯腈-丁二烯-苯乙烯共聚物(ABS)乳液接枝聚合中加入甲基丙烯酸甲酯(MMA),制得了改性ABS,然后与聚碳酸酯(PC)共混挤出,制得了PC/改性ABS复合材料。研究了MMA用量对PC/改性ABS复合材料的熔体流动速率(MFR)、维卡软化温度、力学性能的影响。结果表明:随着MMA用量的增加,PC/改性ABS复合材料的MFR、拉伸强度、弯曲强度和缺口冲击强度均先升高后降低。当MMA质量分数为20%时,PC/改性ABS复合材料的拉伸强度和弯曲强度均达到最大,分别为48.9 MPa和63.2 MPa;当MMA质量分数为30%时,PC/改性ABS复合材料的缺口冲击强度为41.0 kJ/m2;当MMA质量分数不高于30%时,与PC/ABS复合材料相比,PC/改性ABS复合材料的维卡软化温度更高。  相似文献   

6.
将无机纳米氧化铜(CuO)粒子加入氰酸酯树脂(CE),以有机锡(DBTDL)实现自由基引发,定量加入环氧树脂(E–54)制得CE/CuO系列复合材料。测试了复合材料的力学性能、导热性能和耐酸碱腐蚀性能,讨论了复合材料性能得以改变的原因。结果表明,无机纳米CuO粒子的引入,有利于CE基体树脂的聚合,无机纳米CuO粒子含量为10.0%时,复合材料差示扫描量热峰顶温度由286.3℃降至223.6℃,下降21.9%;无机纳米CuO粒子质量分数为6.0%时,复合材料弯曲强度达到165.36 MPa,较纯CE基体树脂提高了95.34%,复合材料冲击强度达14.18 kJ/m2,较纯CE基体树脂提高了62.24%;随无机纳米CuO粒子含量的增加,复合材料导热性能得以改善,当无机纳米CuO粒子含量为10.0%时,复合材料热导率增大10.24倍;无机纳米CuO粒子引入量为7.0%时,复合材料强碱腐蚀率为0.155%,比纯CE基体树脂下降38.0%;复合材料强酸腐蚀率为0.072%,比纯CE基体树脂下降60.4%。  相似文献   

7.
研究了纳米二氧化硅(SiO2)的含量对双马来酰亚胺(BMI)/环氧树脂(EP)/2,2′二烯丙基双酚A(DBA)/纳米SiO2复合材料的耐热性能、力学性能和吸水性能的影响。结果表明,当纳米SiO2的含量为2.0 %(质量分数,下同)时,BMI/EP/DBA/纳米SiO2复合材料具有较高的强度和良好的韧性,其拉伸强度、弯曲强度和缺口冲击强度比BMI/EP/DBA复合材料分别提高了22.8 %、39.0 %和37.8 %;同时,纳米SiO2含量为 2.0 %时,BMI/EP/DBA/纳米SiO2复合材料具有优异的耐热性,其玻璃化转变温度、初始热分解温度和最大热分解温度分别为204、 410、451 ℃。  相似文献   

8.
MC尼龙/纳米Al2O3复合材料力学性能的研究   总被引:9,自引:0,他引:9  
采用原位聚合技术制备了纳米Al2O3增强单体浇铸(MC)尼龙复合材料,用扫描电子显微镜观察其断口形貌纳米粒子分布状况,并测试、分析了纳米Al2O3含量对对材料力学性能的影响。结果表明,采用原位聚合技术可获得的纳米粒子分布均匀、综合性能优良的纳米复合材料,当纳米Al2O3质量分数的4%时,MC尼龙/纳米Al2O3复合材料的拉伸强度、冲击强度和弯曲强度均达到最大值,分别比纯MC尼龙提高了19%、33%和11%。  相似文献   

9.
研究了纳米SiO2含量对苯并恶嗪树脂(BOZ)/双马来酰亚胺(BMI)/双酚A型氰酸酯(BADCy)/纳米SiO2复合材料力学性能、热性能和吸水性能的影响。结果表明,当纳米SiO2质量分数为3%时,BOZ/BMI/BADCy/纳米SiO2复合材料具有较高的强度和良好的韧性,其缺口冲击强度和弯曲强度比BOZ/BMI/BADCy共聚物分别提高了11.6%和8.5%;同时,纳米SiO2质量分数为3%时BOZ/BMI/BADCy/纳米SiO2复合材料具有优异的耐热性,其初始热分解温度和最大热分解温度分别为343.2℃和430.3℃。  相似文献   

10.
通过熔融共混法成功地制备了不同含量蒙脱土的尼龙11/蒙脱土纳米复合材料,利用X衍射(XRD)和透射电镜(TEM)研究了尼龙11/蒙脱土纳米复合材料的微观结构。结果表明,当蒙脱土质量分数小于2%时,形成了剥离型的纳米复合材料,当蒙脱土质量分数超过2%时形成了插层型的纳米复合材料。热重分析表明当蒙脱土质量分数为2%时,纳米复合材料的热分解温度比纯尼龙11提高了27℃。不同蒙脱土含量的纳米复合材料悬臂梁冲击强度均比纯尼龙11的高,但其拉伸强度在蒙脱土质量分数小于8%时降低,以后随蒙脱土含量的增加而提高。  相似文献   

11.
分别采用经γ-氨丙基三乙氧基硅烷(KH550)改性的氧化石墨烯(MGOs)和剑麻纤维素微晶(MSFCM)与酚醛树脂(PF)进行熔融共混,通过辊炼、模压成型方法制备MGOs-MSFCM/PF复合材料,研究MGOs的含量对MGOs-MSFCM/PF复合材料的力学、应力松弛、蠕变及摩擦性能的影响。结果表明:与MSFCM/PF复合材料相比,经过MGOs-MSFCM协同增强的PF复合材料的力学、蠕变和应力松弛性能均有明显提高,且当MGOs质量分数为3%时,MGOs-MSFCM/PF复合材料的冲击强度、弯曲强度、弯曲模量、松弛模量分别提高了13.2%,14.1%,27.8%,19.5%。  相似文献   

12.
于强  鹿院卫  张晓盼  吴玉庭 《化工学报》2019,70(Z1):217-225
为了得到SiO2纳米粒子含量对SiO2/NaNO3-KNO3/EG复合蓄热材料比热容和热导率的影响,通过机械分散法,采用NaNO3-KNO3和不同质量分数(0.1%,0.5%,1%,2%,3%)的SiO2纳米粒子所形成的熔盐纳米材料作为蓄热材料,膨胀石墨(EG)作为基体材料,制备出纳米SiO2/NaNO3-KNO3/EG复合材料。对复合材料的比热容和热导率进行了测量,同时用扫描电镜对其微观结构特征进行了分析。结果表明,SiO2纳米粒子的质量分数为1%时,复合材料的平均比热容和热导率分别为3.92 J/(g·K)和8.47 W/(m·K),与其他纳米SiO2添加比例相比,其比热容和热导率分别提高了1.37~2.17倍和1.7~3.2倍。这是由于复合材料表面会形成高密度的网状结构,这种具有较大比表面积和高表面能的特殊纳米结构可以提高复合材料的比热容和热导率。  相似文献   

13.
将纳米γ-Al_2O_3粒子加入氰酸酯树脂(CE)及环氧树脂(E-54)中,由二月桂酸二丁基锡(DBTDL)引发体系发生自由基聚合反应,制得CE/γ-Al_2O_3系列复合材料。采用示差扫描量热分析、电镜分析及力学、导热性、介电性和耐酸碱腐蚀性测试研究了纳米γ-Al_2O_3粒子用量对复合材料性能的影响。结果表明,无机纳米γ-Al_2O_3粒子的引入有利于CE基体树脂的聚合,其质量分数为10.0%时,复合材料DSC峰顶温度由280.9℃降至218.9℃,导热系数增大8.19倍,电绝缘性良好。其质量分数为6.0%时,复合材料弯曲强度、冲击强度分别达到165.36MPa,14.18 k J/m~2,较纯CE树脂提高了95.34%和62.24%,强酸腐蚀率为0.078%,较纯CE树脂下降42.8%。其质量分数为7.0%时,复合材料强碱腐蚀率为0.162%,较纯CE树脂下降64.8%。综合考虑,无机纳米γ-Al_2O_3粒子的最佳添加质量分数为6.0%。  相似文献   

14.
李辉 《热固性树脂》2020,35(3):24-27
以自制的氧化石墨烯(GO)为改性填料,采用原位聚合法制备了酚醛树脂(PF)/GO复合材料,通过X射线衍射仪、红外光谱、扫描电镜、热重分析及力学性能测试研究了产物结构,GO在PF中的分散以及GO含量对PF/GO复合材料性能的影响。结果表明,GO在PF基体中的分散度可达到微米级,且未与PF发生化学反应。适量引入GO,可有效提高PF的力学性能和热稳定性,当GO的质量分数为1.0%时,PF/GO的冲击强度和弯曲模量达到最大值7.15 kJ/m~2和19.57 GPa,分别比纯PF提高了14.04%和17.96%,当GO质量分数为1.5%时,PF/GO热稳定性最好,T_(5%)、T_(max)和800℃残炭率分别比纯PF提高58.3℃,8.2℃和2%。  相似文献   

15.
自行合成了端羟基的热致性聚酯液晶(PHET),采用原位复合的方法制备了热致性聚酯液晶(PHET)/酚醛树脂(PF)原位复合材料,研究了PHET的用量对PHET/PF原位复合材料的冲击强度、弯曲强度、动态力学性能、热性能等的影响。结果表明,PHET的加入可以提高PHET/PF原位复合材料的力学性能、动态力学性能和热性能,当PHET质量分数为7.5%时,原位复合材料的冲击强度、弯曲强度和玻璃化转变温度(Tg)分别提高了44.69%、44.68%和22.9℃。在200℃时,PHET/PF共混物中液晶丝状织态结构明显且分布连续。  相似文献   

16.
将纳米Nd_2O_3粒子引入氰酸酯树脂(CE)基体,制得CE/Nd_2O_3基复合材料。当纳米Nd_2O_3的加入量为0.3%时,复合材料的冲击强度比CE纯板增加35.40%,弯曲强度也比原来增加57.58%,酸腐蚀率达到最低,达到了CE材料韧性和强度同步增大的目的。  相似文献   

17.
将纳米Nd_2O_3粒子引入氰酸酯树脂(CE)基体,制得CE/Nd_2O_3基复合材料。当纳米Nd_2O_3的加入量为0.3%时,复合材料的冲击强度比CE纯板增加35.40%,弯曲强度也比原来增加57.58%,酸腐蚀率达到最低,达到了CE材料韧性和强度同步增大的目的。  相似文献   

18.
利用碳纳米管(CNTs)对酚醛树脂(PF)/玄武岩纤维(CBF)复合材料进行改性.研究了CNTs含量对PF/CBF复合材料力学性能和烧蚀性能的影响.研究表明,CNTs的加入能明显提高复合材料的力学性能,当CNTs质量分数为1.5%时,复合材料的弯曲强度最大,较未加入CNTs的复合材料提高约39.5%;当CNTs质量分数...  相似文献   

19.
碳纳米管对酚醛树脂/碳纤维复合材料力学性能的影响   总被引:3,自引:1,他引:2  
利用碳纳米管(CNTs)对酚醛树脂(PF)进行改性,研究了CNTs含量对PF/碳纤维(CF)复合材料力学性能的影响。研究表明,CNTs能够明显提高PF/CF复合材料的力学性能,当CNTs的含量为0.5%时,复合材料的弯曲强度达到最大值(891.8MPa),与未加入CNTs时相比提高了168.4MPa,而弯曲弹性模量降低了9.5GPa;当CNTs的含量为1.5%时,复合材料的压缩强度、层间剪切强度、冲击强度均达到最大值,与未加入CNTs时相比,分别提高了10.4%、79.2%、71.9%。  相似文献   

20.
利用硅烷偶联剂KH570对TiO2纳米粒子进行表面改性,然后制备塑化超高分子量聚乙烯(PE-UHMW)/TiO2复合材料,最后通过密炼-模压法制备不同含量和粒子尺寸的TiO2纳米粒子增强PE-UHMW/高密度聚乙烯(PE-HD)复合材料。通过扫描电子显微镜、透射电子显微镜、差示热扫描量热仪、万能试验机、流变仪表征测试复合材料的微观结构、结晶、力学及流变性能。结果表明,低含量的Ti O2纳米粒子(质量分数0.1%)能在聚合物基体中分散良好,使复合材料的力学性能、结晶度及流动性均有显著提升;随粒子尺寸增加,材料强度和刚度降低,断裂伸长率和熔体剪切黏度先增加后降低。然而,高含量粒子分散困难、易形成大的聚集体,导致复合材料性能下降。当TiO2纳米粒子尺寸为5~10 nm、质量分数为0.1%时,复合材料展现出优异的力学性能和加工性能,拉伸强度和拉伸屈服强度分别高达58.21 MPa和44.53 MPa,且熔体剪切黏度下降19.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号