首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Abstract: Phase‐shifting digital holographic interferometry is a new method to measure displacement distribution on the surface of an object. Usually holography has speckle noise, which leads to a large error in the analysis of displacement and strain distributions. We previously proposed windowed phase‐shifting digital holographic interferometry (windowed PSDHI). The use of this method leads to accurate displacement analysis, decreasing the effect of speckle patterns. However, noise reduction involves a defect, which renders the spatial resolution low. In this paper, by comparing the conventional noise reduction method using spatial averaging with the windowed PSDHI on spatial resolution, the effectiveness of noise reduction is discussed.  相似文献   

2.
Wavelet analysis of speckle patterns with a temporal carrier   总被引:5,自引:0,他引:5  
Fu Y  Tay CJ  Quan C  Miao H 《Applied optics》2005,44(6):959-965
A novel temporal phase-analysis technique that is based on wavelet analysis and a temporal carrier is presented. To measure displacement on a vibrating object by using electronic speckle pattern interferometry, one captures a series of speckle patterns, using a high-speed CCD camera. To avoid ambiguity in phase estimation, a temporal carrier is generated by a piezoelectric transducer stage in the reference beam of the interferometer. The intensity variation of each pixel on recorded images is then analyzed along the time axis by a robust mathematical tool, i.e., a complex Morlet wavelet transform. After the temporal carrier is removed, the absolute displacement of a vibrating object is obtained without the need for temporal or spatial phase unwrapping. The results obtained by a wavelet transform are compared with those from a temporal Fourier transform.  相似文献   

3.
The amount of displacement of a diffused object can be measured using phase-shifting digital holography with a polarization imaging camera. Four digital holograms in quadrature are extracted from the polarization imaging camera and used to calculate the phase hologram. Two Fourier transforms of the phase holograms are calculated before and after the displacement of the object. A phase slope is subsequently obtained from the phase distribution of division between the two Fourier transforms. The slope of the phase distribution is proportional to the lateral displacement of the object. The sensitivity is less than one pixel size in the lateral direction of the movement. The longitudinal component of the displacement can be also measured separately from the intercept on the phase axis along the phase distribution of the division between two Fourier transforms of the phase holograms.  相似文献   

4.
Abstract:  Phase-shifting digital holography is a new method for measuring the displacement distribution on the surface of an object. The authors previously proposed a windowed phase-shifting digital holographic interferometry (windowed PSDHI). This method provides accurate displacement distributions by decreasing the effect of speckle patterns. In this study, the method is extended to analyse three-dimensional displacement components in a microscope. Three object laser beams in the optical system are used. Four phase-shifted holograms are recorded for each object laser beam. The complex amplitude of each reconstructed light at the object is calculated by the Fresnel diffraction integral of the complex amplitude of the hologram. The reconstructed distance is obtained at the point with the maximum of the standard deviation of the intensities of the object reconstructed with changing the reconstruction distance. The three phase-difference values between before and after deformation provide the three-dimensional displacement components. Theoretical treatment and experimental results of three-dimensional displacement measurement using this method are shown.  相似文献   

5.
Zhong J  Zeng H 《Applied optics》2007,46(14):2670-2675
A multiscale windowed Fourier transform for phase extraction of fringe patterns is presented. A local stationary length of signal is used to control the window width of a windowed Fourier transform automatically, which is measured by an instantaneous frequency gradient. The instantaneous frequency of the fringe pattern is obtained by detecting the ridge of the wavelet transform. The numerical simulation and experiment have proved the validity of this method. The combination of the windowed Fourier transform and the wavelet transform makes the extracted phase more precise than other methods.  相似文献   

6.
Fu Y  Groves RM  Pedrini G  Osten W 《Applied optics》2007,46(36):8645-8655
In recent years, optical interferometry has been applied to the whole-field, noncontact measurement of vibrating or continuously deforming objects. In many cases, a high resolution measurement of kinematic (displacement, velocity, and acceleration, etc.) and deformation parameters (strain, curvature, and twist, etc.) can give useful information on the dynamic response of the objects concerned. Different signal processing algorithms are applied to two types of interferogram sequences, which were captured by a high-speed camera using different interferometric setups: (1) a speckle or fringe pattern sequence with a temporal carrier and (2) a wrapped phase map sequence. These algorithms include Fourier transform, windowed Fourier transform, wavelet transform, and even a combination of two of these techniques. We will compare these algorithms using the example of a 1D temporal evaluation of interferogram sequences and extend these algorithms to 2D and 3D processing, so that accurate kinematic and deformation parameters of moving objects can be evaluated with different types of optical interferometry.  相似文献   

7.
Lin M  Nitta K  Matoba O  Awatsuji Y 《Applied optics》2012,51(14):2633-2637
Parallel phase-shifting digital holography using a phase-mode spatial light modulator (SLM) is proposed. The phase-mode SLM implements spatial distribution of phase retardation required in the parallel phase-shifting digital holography. This SLM can also compensate dynamically the phase distortion caused by optical elements such as beam splitters, lenses, and air fluctuation. Experimental demonstration using a static object is presented.  相似文献   

8.
We introduce a novel approach for measuring the frequency spectrum of Lamb waves and, subsequently, for obtaining the thickness and the bulk wave velocities of isotropic, homogeneous plates. It is based on Fourier transforming a set of spatial and temporal samples of the acoustic displacement but, in contrast to the traditional approach that employs dense temporal sampling and a reduced set of spatial sampling locations, our data set is a sequence of 2-D high-resolution maps of the instantaneous out-of-plane displacement obtained with TV holography. We have devised three variants to obtain a set of points of the wavenumber-frequency space, based, respectively, on the spatial (1-D or 2-D) and on the spatio-temporal (3-D) Fourier transforms. The whole process to obtain these points can be easily automated and substantial time savings can be achieved, compared with other full-field techniques that require human intervention or with pointwise scanned probes. Experimental demonstration of the three variants with quasimonochromatic multimode Lamb waves in aluminum plates is presented. The characteristic parameters of the plates are calculated by fitting the theoretical model to the experimental points of the frequency spectrum. The analysis of the uncertainties shows that the accuracy of the method is only slightly lower than the accuracy of a previously reported method based on measuring the wavelength of single-modes, for which the data acquisition procedure is much slower.  相似文献   

9.
Abstract

Some new approaches to the digital analysis of the fringes obtained in electro-optic holography are presented. The technique of phase stepping supplemented by Fourier filtering, for the elimination of noise in wrapped-phase maps, is discussed first. The problem introduced by discontinuities at the object boundary and a fringe extrapolation technique to overcome this problem are discussed next. Finally, a technique to compute the phase derivatives directly from the wrapped-phase map is outlined.  相似文献   

10.
11.
This paper presents a pseudo Wigner-Ville-distribution-based method in fringe projection for analyzing temporal behavior of the displacement derivative for a continuously deformed object. In the proposed method, a computer generated fringe pattern is projected on an object undergoing dynamic deformation, and the reflected intensity is recorded in the form of video, i.e., a stack of images are captured sequentially by a CCD camera. Each image represents a recorded fringe pattern at a particular time instant whose phase contains information about the instantaneous out-of-plane displacement or deformation with respect to the undeformed object, and the corresponding spatial phase derivative relates to the displacement derivative. Subsequently, pseudo Wigner-Ville distribution is used for instantaneous phase derivative estimation from the stack of images. Simulation and experimental results are presented to demonstrate the method's potential.  相似文献   

12.
数字同轴和数字离轴全息系统分析   总被引:2,自引:1,他引:1  
利用最高空间频率分析法,通过逐点分析记录在 CCD 上的空间频率信息,研究了物体可允许记录的最大横向尺寸、最小记录距离、全息图的信息量、空间分辨力、再现像的横向分辨力、轴向分辨力及散斑大小,并得到了数学表达式。理论分析和实验结果表明,数字同轴全息系统放宽了对 CCD 分辨力的要求,有较高的分辨力,较低的散斑噪声、灵活、简单的系统结构及较高的 CCD 空间带宽利用率,在增强系统性能方面要优于数字离轴全息系统。这一研究为数字全息系统的设计和操作提供了一定的理论和实验指导。  相似文献   

13.
Digital holography is an imaging technique that enables recovery of topographic 3D information about an object under investigation. In digital holography, an interference pattern is recorded on a digital camera. Therefore, quantization of the recorded hologram is an integral part of the imaging process. We study the influence of quantization error in the recorded holograms on the fidelity of both the intensity and phase of the reconstructed image. We limit our analysis to the case of lensless Fourier off-axis digital holograms. We derive a theoretical model to predict the effect of quantization noise and we validate this model using experimental results. Based on this, we also show how the resultant noise in the reconstructed image, as well as the speckle that is inherent in digital holography, can be conveniently suppressed by standard speckle reduction techniques. We show that high-quality images can be obtained from binary holograms when speckle reduction is performed.  相似文献   

14.
Pulsed digital holographic interferometry with 694- and 347-nm wavelengths   总被引:7,自引:0,他引:7  
A method for deformation analysis and shape measurement based on digital holography is presented. Two wavelengths, 694 and 347 nm, are used. The object is illuminated with the two wavelengths at the same time, and digital holograms are recorded on a CCD chip. The information corresponding to the two wavelengths is separated in the Fourier domain, and the phase corresponding to the wave fronts is calculated. By recording holograms with two different wavelengths at the same time, we can get measurements of deformations or shape with different sensitivities. Experimental results are presented.  相似文献   

15.
The space-bandwidth product (SBP) is a measure for the information capacity an optical system possesses. The two information processing steps in digital holography, recording, and reconstruction are analyzed with respect to the SBP. The recording setups for a Fresnel hologram, Fourier hologram, and image-plane hologram, which represent the most commonly used setup configurations in digital holography, are investigated. For the recording process, the required SBP to ensure the recording of the entire object information is calculated. This is accomplished by analyzing the recorded interference pattern in the hologram-plane. The paraxial diffraction model is used in order to simulate the light propagation from the object to hologram-plane. The SBP in the reconstruction process is represented by the product of the reconstructed field-of-view and spatial frequency bandwidth. The outcome of this analysis results in the best SBP adapted digital holographic setup.  相似文献   

16.
Bhaduri B  Mohan NK  Kothiyal MP 《Applied optics》2007,46(23):5680-5686
The simultaneous quantitative measurement of out-of-plane displacement and slope using the fast Fourier transform method with a single three-aperture digital speckle pattern interferometry (DSPI) arrangement is demonstrated. The method coherently combines two sheared object waves with a smooth reference wave at the CCD placed at the image plane of an imaging lens with a three-aperture mask placed in front of it. The apertures also introduce multiple spatial carrier fringes within the speckle. A fast Fourier transform of the image generates seven distinct diffraction halos in the spectrum. By selecting the appropriate halos, one can directly obtain two independent out-of-plane displacement phase maps and a slope phase map from the two speckle images, one before and the second after loading the object. It is also demonstrated that by subtracting the out-of-plane displacement phase maps one can generate the same slope phase map. Experimental results are presented for a circular diaphragm clamped along the edges and loaded at the center.  相似文献   

17.
Awatsuji Y  Fujii A  Kubota T  Matoba O 《Applied optics》2006,45(13):2995-3002
We propose parallel three-step phase-shifting digital holography as a technique capable of noiseless instantaneous measurement of three-dimensional objects based on phase-shifting interferometry. The proposed digital holography carries out three-step phase shifting at the same time by using a phase-shifting array device located in the reference beam. The array device has a periodic three-step phase distribution, and its configuration is simplified compared with that required for conventional parallel phase-shifting digital holography. Therefore the optical system of the proposed parallel phase-shifting digital holography is more suitable for the realization of the proposed holography. We conduct both a numerical simulation and a preliminary experiment. The results of the simulation and experiment agree well with those of the conventional phase-shifting method and are superior to the results obtained by conventional digital holography by using the Fresnel transform alone. Thus the effectiveness of the proposed technique is verified.  相似文献   

18.
Di J  Zhao J  Jiang H  Zhang P  Fan Q  Sun W 《Applied optics》2008,47(30):5654-5659
Theoretical analysis shows that, to improve the resolution and the range of the field of view of the reconstructed image in digital lensless Fourier transform holography, an effective solution is to increase the area and the pixel number of the recorded digital hologram. A new approach based on the synthetic aperture technique and use of linear CCD scanning is presented to obtain digital holographic images with high resolution and a wide field of view. By using a synthetic aperture technique and linear CCD scanning, we obtained digital lensless Fourier transform holograms with a large area of 3.5 cm x 3.5 cm (5000 x 5000 pixels). The numerical reconstruction of a 4 mm object at a distance of 14 cm by use of a Rayleigh-Sommerfeld integral shows that a theoretically minimum resolvable distance of 2.57 microm can be achieved at a wavelength of 632.8 nm. The experimental results are consistent with the theoretical analysis.  相似文献   

19.
A comparison of several endoscopes as object image carriers in pulsed digital holography is presented. Three multicore flexible fiber endoscopes of different spatial resolution and one rigid endoscope are investigated. The four endoscopes are integrated in a setup for the recording of digital holograms on a CCD camera. A double-pulsed ruby laser is used as the light source. A spatial carrier is introduced by an off-axis reference beam, which permits quantitative evaluation of the phase difference between two holograms recorded with a short time separation (5-600 micros). From reported studies it may be inferred that the quality of the phase maps so derived from digital holographic interferometry has a strong correlation to the spatial resolution of the multicore fiber used in these endoscopes. With the endoscopic technique combined with pulsed digital holography a number of useful applications (in areas such as medical endoscopy, micromechanics, and microelectronics) are envisaged for which access to the objects of interest is otherwise difficult.  相似文献   

20.
Tay CJ  Quan C  Fu Y  Huang Y 《Applied optics》2004,43(21):4164-4171
A temporal wavelet analysis method is proposed for velocity, displacement, and three-dimensional surface-profile measurement of a continuously deforming object by use of the shadow moiré technique. A grating is placed close to a deforming object, and its shadow is observed through the grating. The moiré fringe patterns, generated by the interference of the grating lines and their shadows, are captured by a high-speed CCD camera with a telecentric gauging lens. Instantaneous frequency of gray-value variation is evaluated point by point with the continuous wavelet transform. From the instantaneous frequency of each point on the object, the velocity, displacement, and high-quality surface profile at different instants can be retrieved. In this application, two specimens are tested to demonstrate the validity of the proposed method: One is a small coin with a rigid body motion, and the other is a simply supported beam subjected to a central point load. The results are compared with those obtained from temporal Fourier-transform and mechanical stylus methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号