首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical stability of Chip Scale Packages (CSP) used in surface mount technology is of primary concern. The dominant issues are package warpage and solder fatigue in solder joints under cyclic loads. To address these issues, molding compound and die attach film were characterized with finite element method which employed a viscoelastic and viscoplastic constitutive model. The model was verified with experiments on package warpage, PCB warpage and solder joint reliability. After the correlation was observed, the effect of molding compound and die attach film on package warpage and solder joint reliability was investigated. It was found that package warpage tremendously affected solder joint reliability. Furthermore, a die attach film was developed based on results of the modeling. CSP with the developed die attach film are robust and capable of withstanding the thermal stresses, humidity and high temperatures encountered in typical package assembly and die attach processes. Also, a lead free solder is discussed based on the results of creep testing. This paper presents the viscoelastic and viscoplastic constitutive model and its verification, the optimum material properties, the experimental and simulated reliability and performance results of the u*BGA packages, and the lead free solder creep.  相似文献   

2.
Both elastic-plastic-creep and viscoplastic constitutive models may be used for inelastic deformation analysis of solder joints. In this paper, a phenomenological approach using elastic-plastic-creep analysis and an Anand viscoplastic model is reported for solder joint reliability. Flip chip soldered assemblies with 63Sn-37Pb solder joints were subjected to a thermal cyclic loading condition of -40 to +125/spl deg/C to assess the solder joint fatigue performance. In the finite-element modeling, the viscoplastic strain energy density per cycle obtained from the viscoplastic analysis is compared with the inelastic (plastic and creep) strain energy density per cycle calculated from the elastic-plastic-creep analysis. The inelastic (plastic+creep and viscoplastic) strain energy density extracted from the finite-element analysis results, at the critical solder joint location, were used as a failure parameter for solder fatigue models employed. It was found that the predicted solder joint fatigue life has a better correlation to the first failure or first-time-to-failure result.  相似文献   

3.
The bottom-leaded plastic (BLP) package is a lead-on-chip type of chip scale package (CSP) developed mainly for memory devices. Because the BLP package is one of the smallest plastic packages available, solder joint reliability becomes a critical issue. In this study, a 28-pin BLP package is modeled to investigate the effects of molding compound and leadframe material properties, the thickness of printed circuit board (PCB), the shape of solder joint and the solder pad size on the board level solder joint reliability. A viscoplastic constitutive relation is adopted for the modeling of solder in order to account for its time and temperature dependence on thermal cycling. A three-dimensional nonlinear finite element analysis based on the above constitutive relation is conducted to model the response of a BLP assembly subjected to thermal cycling. The fatigue life of the solder joint is estimated by the modified Coffin-Manson equation. The two coefficients in the modified Coffin-Manson equation are also determined. Parametric studies are performed to investigate the dependence of solder joint fatigue life on various design factors.  相似文献   

4.
The chip size package (CSP) is being used in various portable electronic products recently. Further evaluation of the reliability of its soldered joints is required all the more now because those soldered joints are invisible. This study focused on the thermal fatigue life of soldered joints in the CSP. CSPs were mounted on printed circuit boards (PCBs) in various configurations and mounting conditions, and underwent thermal cycle testing. Then, the fatigue lives of their soldered joints were compared. As a result, the following two facts became apparent. First, reflowing at a 210°C peak tends to result in failures that may be derived from poor wetting between solder and pad, in cases where the CSP is mounted on a nickel and gold plated pad. And second, the size of the soldered joint has a great influence on its fatigue life. The larger the soldered joints that we made, the longer fatigue life they indicated. A finite element method (FEM) analysis of those mounted structures was also executed. Viscoplastic (creep and plastic) property of solder was evaluated to compute equivalent inelastic strain occurring in the joints. A parameter in the Coffin-Manson equation is obtained from the computed inelastic strain amplitudes and the experimented actual fatigue lives. This result will enable estimation of the fatigue life of soldered joints of the CSP without actual tests  相似文献   

5.
CSP封装Sn-3.5Ag焊点的热疲劳寿命预测   总被引:3,自引:0,他引:3  
韩潇  丁汉  盛鑫军  张波 《半导体学报》2006,27(9):1695-1700
对芯片尺寸封装(CSP)中Sn-3.5Ag无铅焊点在热循环加速载荷下的热疲劳寿命进行了预测.首先利用ANSYS软件建立CSP封装的三维有限元对称模型,运用Anand本构模型描述Sn-3.5Ag无铅焊点的粘塑性材料特性;通过有限元模拟的方法分析了封装结构在热循环载荷下的变形及焊点的应力应变行为,并结合Darveaux疲劳寿命模型预测了无铅焊点的热疲劳寿命.  相似文献   

6.
The reliability concern in flip-chip-on-board (FCOB) technology is the high thermal mismatch deformation between the silicon die and the printed circuit board that results in large solder joint stresses and strains causing fatigue failure. Accelerated thermal cycling (ATC) test is one of the reliability tests performed to evaluate the fatigue strength of the solder interconnects. Finite element analysis (FEA) was employed to simulate thermal cycling loading for solder joint reliability in electronic assemblies. This study investigates different methods of implementing thermal cycling analysis, namely using the "dwell creep" and "full creep" methods based on a phenomenological approach to modeling time independent plastic and time dependent creep deformations. There are significant differences between the "dwell creep" and "full creep" analysis results for the flip chip solder joint strain responses and the predicted fatigue life. Comparison was made with a rate dependent viscoplastic analysis approach. Investigations on thermal cycling analysis of the temperature range, (ΔT) effects on the predicted fatigue lives of solder joints are reported  相似文献   

7.
Sn-Ag-Cu (SAC) is now recognized as the standard lead free solder alloy for packaging interconnect in the electronics industry. This paper analyzes the performance of both SAC and eutectic Sn-Pb solder alloys on Kulicke & Soffa's (K&S') Ultra CSP/spl reg/ wafer level package (WLP) at a thermal cycling (TC) test. The Ultra CSP standard Al/Ni-V/Cu under bump metallurgy (UBM) system was used to analyze if this UBM system with SAC solder would produce acceptable reliability in the TC test. In this study, two TC tests were performed. In the first test, two parts were removed from the TC chamber about every 200 cycles to investigate the characteristics of deformation and crack growth in the SAC and eutectic Sn-Pb Ultra CSP solder joints during TC testing. These TC test results showed that both the SAC and eutectic Sn-Pb Ultra CSPs exhibited normal solder joint fatigue failures during the testing. The SAC Ultra CSP had an equal or 18% higher Weibull life than the eutectic Sn-Pb one. Based on these results it was concluded that the SAC Ultra CSP with the Al/Ni-V/Cu UBM system produces acceptable solder joint reliability in a TC test. The results also revealed that the deformation and crack growth characteristics of the SAC and eutectic Sn-Pb Ultra CSP solder joints were significantly different. The eutectic Sn-Pb solder joints showed significant inelastic shear deformation during the TC testing while the SAC solder joints did not display significant inelastic deformation even at the high temperature regime of the TC test.  相似文献   

8.
A rate dependent constitutive model, the Anand model, was applied to represent the inelastic deformation behavior for a Pb-rich solder 92.5Pb5Sn2.5Ag used in electronic packaging and surface mount technology. This rate dependent model is a unified viscoplastic constitutive model using an internal state variable, the deformation resistance, to describe the averaged isotropic resistance to macroscopic plastic flow. In order to obtain the acquired data for the fitting of the material parameters of this unified model for 92.5Pb5Sn2.5Ag solder, a series of experiments of constant strain rate test and constant load creep test were conducted under isothermal conditions at different temperatures ranged from -65°C to 250°C. A procedure for the determination of material parameters was proposed in this paper. Model simulations and verifications revealed that there are good agreements between model predictions and experimental data. Moreover, some discussions on using this rate dependent model in the finite element simulation of stress/strain responses of solder joints under thermal fatigue loading were presented  相似文献   

9.
利用ANSYS有限元分析软件,将芯片尺寸封装(CSP)组件简化为了二维模型,并模拟了CSP组件在热循环加栽条件下的应力应变分布;通过模拟发现了组件的结构失效危险点,然后对危险点处的焊点热疲劳寿命进行了预测;最后进行了CSP焊点可靠性测试.结果表明,用薄芯片可提高焊点可靠性.当芯片厚度从0.625 mm减小到0.500 ...  相似文献   

10.
采用实验方法,确定了倒装焊SnPb焊点的热循环寿命.采用粘塑性和粘弹性材料模式描述了SnPb焊料和底充胶的力学行为,用有限元方法模拟了SnPb焊点在热循环条件下的应力应变过程.基于计算的塑性应变范围和实验的热循环寿命,确定了倒装焊SnPb焊点热循环失效Coffin-Manson经验方程的材料参数.研究表明,有底充胶倒装焊SnPb焊点的塑性应变范围比无底充胶时明显减小,热循环寿命可提高约20倍,充胶后的焊点高度对可靠性的影响变得不明显.  相似文献   

11.
对比封装体不同的热疲劳寿命预测模型,选择适用于微弹簧型陶瓷柱栅阵列(CCGA)封装的寿命预测模型,并对焊点的热疲劳机制进行分析。利用Workbench对焊点进行在温度循环载荷作用下的热疲劳分析。对比不同热疲劳寿命预测模型的结果,表明基于应变能密度的预测模型更适用于微弹簧型CCGA。随后对等效应力、塑性应变、平均塑性应变能密度和温度随时间变化的曲线进行分析,结果表明,在温度保持阶段,焊柱通过发生塑性变形或积累能量来降低其内部热应力水平,减少热疲劳损伤累积;在温度转变阶段,焊柱的应力应变发生剧烈变化,容易产生疲劳损伤。  相似文献   

12.
Stacked die BGA has recently gained popularity in telecommunication applications. However, its board level solder joint reliability during the thermal cycling test is not as well-studied as common single die BGA. In this paper, solder joint fatigue of lead-free stacked die BGA with mixed flip-chip (FC) and wirebond (WB) interconnect is analyzed in detail. 3D fatigue model is established for stacked die BGA with considerations of detailed pad design, realistic shape of solder ball, and non-linear material properties. The fatigue model applied is based on a modified Darveaux’s approach with non-linear viscoplastic analysis of solder joints. Based on the FC–WB stack die configuration, the critical solder ball is observed located between the top and bottom dice corner, and failure interface is along the top solder/pad interface. The modeling predicted fatigue life is first correlated to the thermal cycling test results using modified correlation constants, curve-fitted from in-house lead-free TFBGA46 (thin-profile fine-pitch BGA) thermal cycling test data. Subsequently, design analyzes are performed to study the effects of 20 key design variations in package dimensions, material properties, and thermal cycling test conditions. In general, thinner PCB and mold compound, thicker substrate, larger top or bottom dice sizes, thicker top die, higher solder ball standoff, larger solder mask opening, smaller PCB pad size, smaller thermal cycling temperature range, longer ramp time, and shorter dwell time contribute to longer fatigue life. SnAgCu is a common lead-free solder, and it has much better board level reliability performance than eutectic solder based on modeling results, especially low stress packages.  相似文献   

13.
This paper discusses the possible thermomechanical interaction (coupling) phenomena of a miniature solder system in electronic packaging application similar to those which have been identified for some metallic material systems in aerospace and nuclear structures under cyclic fatigue loads at different frequencies. The main objective is to investigate the heat generated by the viscoplastic deformations, and vice versa, especially on the thermal transient and the gradient induced viscoplastic ratchetting response of cyclic creep. A literature review was conducted to focus on the temperature-dependent, strain rate-sensitive stress-strain response of the eutectic or near-eutectic lead-tin (Pb37-Sn63 or Pb40-Sn60) solder alloys. The result was used to develop and apply a simple overstress constitutive theory for modeling the coupled, isotropic thermoviscoplasticity of the eutectic lead-tin solder alloy. A fully coupled heat transfer and mechanical finite element model is used to simulate possible thermal-mechanical interactions of temperature rise and viscoplastic ratchetting of the miniature solder systems in a C4/BGA chip scale package (CSP) under cyclic fatigue loads at different frequencies. The results of analysis are discussed to compare between a coupled thermomechanical model and that of a pure mechanical model.  相似文献   

14.
Due to requirements of cost-saving and miniaturization, stacked die BGA has recently gained popularity in many applications. However, its board level solder joint reliability during the thermal cycling test is not as well-studied as common single die BGA. In this paper, solder joint fatigue of wirebond stacked die BGA is analyzed in detail. 3D fatigue model is established for stacked die BGA with considerations of detailed pad design, realistic shape of solder ball, and non-linear material properties. The fatigue model applied is based on a modified Darveaux's approach with non-linear viscoplastic analysis of solder joints. The critical solder ball is observed located between the top and bottom dice corner, and failure interface is along the top solder/pad interface. The modeling predicted fatigue life is first correlated to the thermal cycling test results using modified correlation constants, curve-fitted from in-house TFBGA (thin-profile fine-pitch BGA) thermal cycling test data. Subsequently, design analyses are performed to study the effects of 16 key design variations in package dimensions, material properties, and thermal cycling test conditions. In general, smaller top and bottom dice sizes, thicker top or bottom die, thinner PCB, thicker substrate, higher solder ball standoff, larger solder mask opening size, smaller maximum ball diameter, smaller PCB pad size, smaller thermal cycling temperature range, longer ramp time, and shorter dwell time contribute to longer fatigue life. The effect of number of layers of stacked-die is also investigated. Finally, design optimization is performed based on selected critical design variables.  相似文献   

15.
In this paper, the shear cycle fatigue properties of plastic ball grid array (PBGA) assemblies' solder joints reflowed with three different profiles, and aged at 125°C for four, nine, 16, 25, and 36 days are studied. The profiles were devised to have the same "heating factor," which was defined as the integral of the measured temperature above the liquidus (183°C) with respect to dwell time in the reflow profile, but to have different conveyor speeds. The effects of conveyor speed on the solder joint (nonaged and aged) fatigue lifetimes were investigated. It was found hat with increasing the conveyor speed the solder joint shear fatigue lifetime could be improved substantially. Also, the shear fatigue lifetimes of aged solder joints decreased with increasing aging time and variation in fatigue lifetimes increased for faster conveyor speed. SEM and optical micrographs show that faster cooling rate caused a rougher interface of solder/IMC and less crystallization microstructure in solder joints. Rougher interface solder joints have a longer nonaged fatigue life. The thickness of IMC increases with increasing aging time and the growth rate for solder with faster cooling rate was larger. SEM cross section views reveal that cracks initiated at the acute position near the solder pad, then propagated along the interface of the bulk solder/IMC layer. Thicker IMC layers deteriorated fatigue life, so the fatigue lifetime variation of aged solder joints with fast cooling rate was larger  相似文献   

16.
通过Surface Evolver软件对LGA焊点进行了三维形态预测,利用有限元数值模拟对LGA焊点在热循环条件下寿命进行了分析。研究了热循环条件下LGA焊点的应力应变分布规律,随着焊点远离元件的中心位置焊点所受到的等效应力、等效应变和塑性应变能密度逐渐增大,从而得出处于外面拐角的焊点最先发生失效的结论。基于塑性应变范围和Coffin-Manson公式计算了焊点热疲劳寿命;找出了LGA焊点形态对焊点寿命的影响规律,模板厚度一定时PCB焊盘尺寸小于上焊盘时LGA焊点的热疲劳寿命与PCB焊盘尺寸成正比,大于上焊盘时成反比,大约相等时焊点寿命最大。当PCB焊盘和模板开孔尺寸固定时,通过增大模板厚度来增加焊料体积在一定程度上可提高LGA焊点的热疲劳寿命,但是模板厚度增大到一定值时LGA焊点寿命会逐渐降低。  相似文献   

17.
The influence of dwell time on mechanical behaviour and fatigue life of SMT solder joints under thermal cycling has been investigated. The dwell time has two effects on the mechanical behaviour of SMT solder joints under thermal cycling: first, in the dwell time of high-temperature part, the stress in SMT solder joints will notably relax, and secondly, as the dwell time increase, the stress in solder joints in the low-temperature part of thermal cycling increases. With the increase of dwell time, the life of SMT solder joints under thermal cycling exponentially decreases.  相似文献   

18.
A nonlinear finite element model is presented for analyzing the cyclic and thermal fatigue loading and for viscoplastic damage characterization of the lead-tin (Pb-Sn) solder joints in a ceramic ball grid array (CBGA) surface mount package. An approach using a Δ ∈ eq in -modified Coffin-Manson equation is proposed to estimate the fatigue life of the solder joints. The Δ ∈ eq in represents a saturated equivalent inelastic strain range as determined by the finite element model. The present study shows that the predictied fatigue life and the associated damage mechanism of the solder joint agree reasonably well with the test data for the 18,25, and 32 mm CBGA packages run at a cyclic temperature load of 0°C/100°C with a frequency of 1.5 cycles per hour. Analysis also shows that a preferred failure site is expected to occur in and around the Pb37-Sn63 solder attachment of the solder joint. A time-dependent (creep induced) damage mechanism is found to be more pronounced than the time-independent (plastic deformation) mechanism.  相似文献   

19.
The main goal of this paper is to shed light on the effect of strain rate and viscoplastic deformation of bulk solder on the interfacial failure of lead-free solder joints. For this purpose, interfacial damage evolution and mode I fracture behavior of the joint were evaluated experimentally by performing stable fracture tests at different strain rates employing an optimized tapered double cantilever beam (TDCB) design. The viscoplastic behavior of the solder was characterized in shear, and the constitutive parameters related to the Anand model were determined. A rate-independent cohesive zone damage model was identified to best simulate the interfacial damage progression in the TDCB tests by developing a three-dimensional (3D) finite-element (FE) model and considering the viscoplastic response of the bulk solder. The influence of strain rate on the load capability and failure mode of the joint was clarified by analyzing the experimental and simulation results. It was shown how, at the lower strain rates, the normal stress generated at the interface is limited by the significant creep relaxation developed in the bulk solder and thus is not sufficiently high to initiate interfacial damage, whereas at higher rates, a large amount of the external energy is dissipated into interfacial damage development.  相似文献   

20.
There are several different constitutive relations for describing the creep behavior of solder to predict the fatigue life of a solder joint. The differences among these constitutive relations for fatigue life prediction of electronic packages are unknown because analysts using finite element programs such as ABAQUS or ANSI'S are generally limited to specific built-in material models. The objective of this study is to implement a procedure that allows the use of various creep models in the analysis of electronic packages using ANSYS. Special user routines are developed so the user can incorporate virtually any creep relation and determine the inelastic strain energy density developed in the three-dimensional solid elements. Comparisons are performed for the modified creep routines and the viscoplastic formulation of Anand's model in ANSYS. It is found that the scheme used by ANSYS to determine plastic work density is incorrect and will be remedied in a future release. The implications of this revision to ANSYS are critical because a change in scheme will make comparisons with past studies and analyses difficult. The value of the empirical parameters based on previous analyses, which are widely used in the prediction of package fatigue life, will have to be reexamined  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号