首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
太阳光泵浦固体激光器具有结构简单、能量转换环节少、效率较高的特点,特别适用于空间传能、空间激光通信和空间对抗等空间应用.文中介绍了太阳光泵浦固体激光器的基本原理,装置结构及发展现状,论述了可能的空间应用,并展望了未来的发展方向.  相似文献   

2.
利用解析法分析了激光二极管(LD)侧面紧耦合泵浦固体激光器中泵浦光强分布特点,其增益分布与发光单元发光面处的束腰半径、激光二极管等间距环绕个数、泵浦源与晶体表面的距离、晶体棒半径和工作物质的吸收系数有关,通过调整泵浦参数可以实现中心强边缘弱的泵浦光分布。采用LD紧贴于Nd:YAG的紧耦合双侧面对称泵浦技术,对侧面紧耦合泵浦微型激光器进行了相关研究,实验上实现了激光二极管泵浦固体激光器(DPL)的微型化。  相似文献   

3.
太阳能直接泵浦式激光器   总被引:1,自引:0,他引:1  
太阳能是洁净的可再生能源,利用它来直接泵浦激光工作物质产生激光,即为太阳能直接泵浦式激光器.本文阐述了太阳能泵浦激光器的发展历程,介绍了太阳光的成像采集和非成像采集系统以及太阳能激光器的泵浦方式,并分析了掺Nd和CrNd共掺材料等激光工作物质的性能.最后经过分析,认为Cr/Yb共掺双包层光纤在太阳能泵浦激光器方面具有很大的应用潜力.  相似文献   

4.
LD直接侧面泵浦棒状介质的光场研究   总被引:7,自引:2,他引:5       下载免费PDF全文
王建华  翟刚  金锋  李晶  时顺森  马楠  侯天晋 《激光技术》2004,28(1):36-38,41
采用光线追迹的方法,建立了一套二极管直接侧面泵浦固体激光器的泵浦光场分布的数值模型,运用计算机进行模拟计算,分析系统结构参数对泵浦均匀性的影响,可为二极管泵浦固体激光器结构设计提供理论指导。实验测试了3种不同的侧面泵浦方式下激光介质的荧光分布图,所得结果与模拟计算结果基本相符,证实该数值模型得到的理论分析对二极管直接侧面泵浦固体激光器的结构设计和实验研究具有一定的指导意义。  相似文献   

5.
本文基于近年来的工作,对高功率二极管泵浦固体激光器的一些关键技术问题进行了分析,提出了向更高功率水平发展可行的技术方案,并讨论了应解决的关键问题,最后展望了高功率二极管泵浦固体激光器的应用前景。  相似文献   

6.
段云 《电光系统》1997,(3):21-27
高功率二极管阵列自80年代中期出现以来,在这10年间,二极管泵浦固体激光器在海外已取得实质性进展,最后,多模工作中,1.06μm的CW输出功率已超过300W,单频工作中也已获得了20W的CW功率,高的光束质量、1km高的平均功率,可重复性脉冲激光系统也已研制出来。本文概述了世界上高功率二极管泵浦固体激光器的最新进展,包括Q开关激光器,特别感兴趣的是工业应用,如:激光材料加工。  相似文献   

7.
二极管侧面泵浦固体激光器热效应研究   总被引:6,自引:2,他引:4  
文中对大功率二极管侧面泵浦固体激光器的热效应进行了分析,并对灯泵浦固定激光器与二极管固体激光器的热效应进行比较,在实验中得出了大功率二极管侧面泵浦固定激光器热效应的经验公式。  相似文献   

8.
这份出国考察报告介绍了作者最近到德国和美国访问的十三个单位研究开发和生产固体激光器的情况。面泵浦固体激光器(即板条式激光器)、半导体二极管泵浦固体激光器和激光加工是这份报告的重点。  相似文献   

9.
半导体激光泵浦固体激光器的新进展和应用前景   总被引:1,自引:0,他引:1  
评述了半导体激光泵浦固体激光器的国际新进展及其在军事、工业和医学上的应用前景。综述了近年来DPL的国内进展, 内容包括用连续1 W LD端面泵浦和准连续60 W LDA侧面泵浦固体激光器的研究中得到的有关单纵模、调Q和锁模的结果。  相似文献   

10.
张铭  张杰 《电光系统》1995,(1):33-41
本文阐述激光二极管泵浦技术和2μm波段固体激光器的特点,综述二极管泵浦2μm固体激光器的研制情况,并着重介绍人眼安全Q开关LD泵浦的2.090μmHo:YAG激光技术。  相似文献   

11.
增益开关型固体可调谐激光器的时间特性──理论   总被引:7,自引:2,他引:5       下载免费PDF全文
张国威 《激光技术》1995,19(3):129-134
本文从理论上分析研究了调Q激光器泵浦的固体可调谐激光器的时间特性,推导出了这种寿命为μS量级的固体可调谐激光器,当用10ns量级脉宽激光泵浦时的激光脉冲建立时间公式和输出脉宽公式。这种泵浦时间远小于激光脉冲建立时间的增益开关型激光器的理论分析表明,其输出激光的时间特性仅取决于泵浦能量(密度)的水平和腔长(以及腔损耗),而与泵浦脉冲宽度和波形无关。  相似文献   

12.
高功率板条激光器的研究进展   总被引:3,自引:0,他引:3  
板条激光器,特别是LD抽运的板条激光器,作为高功率同体激光器的一个重要发展方向,在军用和工业应用等领域有着较好的应用前景。综述了板条激光器的抽运、冷却方式以及谐振腔设计方面的进展,并对其应用前景进行展望。  相似文献   

13.
分析了用于激光陀螺的固体激光器的特点,采用LD光纤耦合泵浦,对四镜8字形腔的连续固体环形激光器进行了实验研究。使用具有光阑功能的F?蛳P标准具选模,实现了基横模单纵模运转,实验获得了单频双向连续输出,并测量了其双向输出功率特性,单路输出功率稳定性100 s内为0.4%,在单模输出0.2 mW时,1.5 s内线宽约为4 kHz。分析表明获得窄线宽是固体激光器用于陀螺的首要要求,还表明使用均匀加宽增益的连续固体环形激光器能实现单频双向运转。  相似文献   

14.
介绍了激光加工的优点和对激光器输出参数的要求,对固体激光器中发展最活跃的半导体泵浦全固体激光器进行了分析。在对当前的几种主要结构比较后,指出盘形激光器和光纤激光器将在未来的激光加工中发挥更大的作用。  相似文献   

15.
使用菲涅耳透镜的太阳光抽运Nd:YAG激光器   总被引:4,自引:1,他引:3  
太阳能是规模最大的可再生能源,为充分利用这一资源,太阳光直接抽运激光器是一种明智的选择。提出并搭建了采用两级会聚系统的太阳光抽运激光器系统。使用菲涅耳透镜作为大口径成像型第一级会聚系统,漫反射锥形聚光腔作为非成像型第二级会聚系统提高入射太阳光到工作物质的耦合效率。采用Nd:YAG晶体作为工作物质,获得了2.85 W的激光输出,从太阳光到激光的转换效率为0.43%。从菲涅耳透镜会聚效率、聚光腔内激光棒轴线上的功率分布等会聚系统方面和激光输出特性方面分析了该太阳光抽运激光器的性能;探讨了转换效率低的原因,并提出了相应的改进措施。  相似文献   

16.
蓝光激光二极管抽运Pr:YLF绿光激光器   总被引:1,自引:1,他引:0  
黄舜林  刘哲  曾承航  蔡志平  许惠英 《中国激光》2012,39(12):1202005-32
报道了蓝光激光二极管抽运的掺镨氟化钇锂(Pr:YLF)固体绿光激光器。采用长度5mm、掺杂离子数分数为0.5%的Pr:YLF晶体作为激光增益介质,在中心波长444nm的蓝光激光二极管抽运下,获得波长522.4nm的连续绿光激光输出。应用不同透射率的输出耦合镜研究了激光器的输入输出特性。在吸收抽运光功率530mW,输出镜透射率为1.9%时获得最大输出功率为90.1mW,斜率效率达到65.3%。  相似文献   

17.
LD泵浦8.7 kW固体热容激光器实验研究   总被引:4,自引:1,他引:3       下载免费PDF全文
设计了高功率固体热容激光器实验装置。采用二极管阵列泵浦Nd:GGG晶体腔内串联的方式,对激光器的输出特性进行了实验研究,得到输出平均功率8.7 kW,光光效率20%。获得了增益介质内的荧光分布,利用干涉测量法测量干涉条纹表征增益介质受热后折射率变化造成的畸变。  相似文献   

18.
本文论述了大功率半导体侧面泵浦固体激光器的基本原理,简述了半导体泵浦固体激光器的常见特征。结合实际应用,介绍了一种泵浦效率较高的侧面泵浦激光器,其采用9条单片20W的线阵激光二极管条,分成3组均匀排列在直径为3mm的YAG激光晶体周围,使用陶瓷漫反射体组成聚光腔,当808nm激光的注入功率为180W时,得到较为均匀的62.6W的激光输出,光光效率为35.2%。  相似文献   

19.
宋越  王志敏  张丰丰  薄勇  彭钦军 《红外与激光工程》2021,50(3):20200217-1-20200217-7
报道了一种高功率、高光束质量的755 nm连续波翠绿宝石激光器。首先,对比研究了638 nm激光二极管(LDs)和532 nm固体激光器单端泵浦的翠绿宝石激光器。当638 nm LDs作为泵浦源时,得到的连续输出功率、光-光转换效率分别为3.9 W和19.7%。保持其他条件基本不变,将泵浦源换成532 nm激光器,得到的连续输出功率、光-光转换效率分别为2.1 W和10.0%。结果表明利用 638 nm LDs泵浦翠绿宝石可获得更高的激光功率和转换效率。此外,研究了638 nm LDs双端泵浦的翠绿宝石激光器,在755 nm处得到了6.2 W的连续输出功率,相应的光-光转换效率和斜效率分别为16.3%和24.2%,并且连续输出功率为5.0 W时的光束质量M2优于1.47,这是翠绿宝石激光器在近衍射极限下的最高连续输出功率。这种高功率、高光束质量的755 nm翠绿宝石激光器为连续波紫外激光器的研制提供了良好、稳定的基频源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号