首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
基于空心光纤多模干涉的折射率传感器研究   总被引:4,自引:2,他引:2  
李恩邦 《光电子.激光》2010,(10):1439-1444
基于空心光纤(HF)多模干涉原理提出一种新颖光纤折射率传感器,实现了对环境溶液折射率的测量。这种光纤折射率传感器不仅制作简单、成本低廉,而且为波长编码、抗干扰性好。实验表明,这种光纤折射率传感器其有效传感范围为1.333~1.450,并且当溶液折射率小于1.40时,特征波长与折射率近似呈线性关系,灵敏度为88.07 nm。针对相同折射率不同溶质的溶液,传感器出射光谱能量差异表明,该结构的光纤传感器在物质检测方面有着潜在的应用。  相似文献   

2.
提出了一款由输入单模光纤(SMF)-多芯光纤(MCF) -多模光纤(MMF)-输出SMF错位熔接构成的光纤Mach-Zehnder 干涉仪(MZI)结构,实现了环境温度和折射率的同时测量。实验结果表明,随着环境温度的 变化,传感器透射谱峰值波长线性漂移,灵敏度达 到54.238pm/℃,而透射谱峰值强度随温度变化不敏感;随着环境折 射率的变化,传感器透射谱峰值 强度线性变化,灵敏度达到10.704dB/RIU(RIU为折射率单位),而透 射谱峰值波长随环境折射率变 化不敏感。通过同时监测传感器输出光谱的峰值波长漂移量和峰值强度变化量,能够实现温 度与折 射率的同时测量。在温度与折射率测量时分别利用波长调制法与强度调制法,因此它们同时 测量不 存在交叉感染。本文传感器具有结构简单、制作容易和灵敏度高等优点,在生物、化学和医 学等领域有广泛的应用前景。  相似文献   

3.
基于光子晶体光纤M-Z干涉仪的折射率传感器研究   总被引:7,自引:5,他引:2  
研制了一种通过手工熔接方法在两段单模光纤(SMF)间焊接一段实芯光子晶体光纤(PCF)而形成的Mach-Zehnder干涉仪(MZI)传感器,研究了传感器传输光谱与外界折射率的关系。实验结果表明,这种MZI传感器的中心波长随着外界折射率的增加向长波方向漂移,在1.340-1.384的折射率变化范围内,干涉长为3.2cm...  相似文献   

4.
本实验基于模间干涉原理制作了由熊猫型保偏光纤(Panda polarization maintaining fiber,PMF)构成的马赫-曾德尔干涉仪(Mach-Zehnder interferometer,MZI)传感器。该传感器由于大孔径多模光纤(large aperture multimode fiber,MMF)的耦合作用,对温度表现出很高的灵敏性。当外界物理量温度变化时,传感器透射谱发生漂移,通过观察特征峰的漂移与温度变化的关系,得到传感器温度响应特性。实验数据显示,该单模-多模-熊猫-单模光纤干涉仪结构的两个特征峰波长对温度线性响应,且灵敏度为-123.80 pm/℃和-195.20 pm/℃。该传感器温度实验的重复性和稳定性效果均很好,能实现对温度的有效测量。  相似文献   

5.
郑亚如  邹辉  赵瑞  熊慧  王旗 《光电子.激光》2017,28(12):1285-1289
实现了一种基于腰椎扩径熔接马赫-曾德尔(M-Z )干涉仪的温度光纤传感器。通过腰椎扩径熔接技术,分别对4.5cm 长的单模光纤(SMF)两端进行扩径,构成球形-单模-球形结构的M-Z干涉仪。该干涉仪具 有温 度敏感特性,因外界环境温度的变化会引起光纤包层模的有效折射率发生变化,从而导致干 涉光谱的变化。 通过检测同一级次干涉谷的特征波长漂移,实现对温度的测量。实验结果表明,在温度变化 范围为15~60℃ 时,干涉谱发生了明显的红移现象,传感器相应的温度灵敏度为0.068nm/℃。本文温度光纤传感器结构简单、成本低和灵敏度高,在温度检测方面具有良好的 应用前景。  相似文献   

6.
本文设计了一种“单模光纤-多模光纤-多芯光纤-多模光纤-单模光纤”的全光 纤 Mach-Zehnder干涉仪结构。在该结构中多模光纤充当耦合器,不同模式的光在多芯光纤中 传输时将 产生光程差,形成Mach-Zehnder干涉。当环境温度和折射率变化时,通过分析干涉仪透射 光谱中不 同谐振峰的漂移量,实现折射率与温度的测量。实验结果表明,传感器低温灵敏度最高达到 46.0 pm/℃, 高温灵敏度最高达到109.0 pm/℃,折射率灵敏度最高达到54.3 nm/RIU(RIU为折射率单位)。另外, 通过同时监测传感器透射谱的两个谐振峰值波长随环境温度和折射率的漂移情况,实现了环 境温度 与折射率的同时测量,不存在交叉敏感。该传感器结构简单、制作容易、重复性好、响应稳 定、具 有多路复用功能,在传感领域有广泛的应用前景。  相似文献   

7.
徐贲  李裔  孙苗  赵晓伟 《中国激光》2012,39(s1):114008
提出了一种新颖的光纤液位传感器。在普通单模光纤(SMF)中间熔接一段细芯单模光纤(TCSMF),构成共轴光纤马赫曾德尔干涉仪(MZI)。液位的变化引起包层模与芯模的相位差发生改变,从而导致干涉仪的透射光谱发生改变。对传感器的工作原理和测量灵敏度及精度进行了理论分析,实验结果显示透射光谱中特征峰波长漂移量跟液位变化量呈较好的线性关系,且灵敏度随待测液体折射率的增大而增高,与理论分析结果相一致。测量得到纯水和饱和氯化钠溶液的测量灵敏度分别为0.160 nm/mm和0.228 nm/mm。该传感器采用全光纤结构,制备简单、测量精度高,可适用于折射率低于光纤包层折射率液体的高精度液位测量。  相似文献   

8.
双峰效应光纤光栅薄膜传感器的优化设计   总被引:1,自引:0,他引:1  
利用双峰谐振效应,通过在长周期光纤光栅(LPFG)包层表面涂覆一层对周围气氛敏感的薄膜,建立了一种新型薄膜传感器,其双峰谐振波长间隔随薄膜折射率的变化而变化.基于三包层光纤光栅物理模型,根据耦合模理论研究了传感器的灵敏度Sn与薄膜光学参数(折射率n3和厚度h3)和光纤光栅结构参数(光栅周期Λ、折变量σ)之间的关系.采用最优化数值方法,确定了最佳的膜层光学参数和光栅结构参数.计算表明,该类型传感器对膜层折射率的测量分辨率高达10-7.  相似文献   

9.
提出了一种基于双偏置结构光纤马赫-曾德干涉仪(Mach-Zehnder interferometer, MZI)的超高灵敏度折射率传感器,理论分析了偏置型MZI的干涉机理。通过光束传播法(beam propagation method, BPM)模拟分析了多模态偏置光纤的折射率传感特性、以及在不同偏置长度和折射率范围内折射率灵敏度的变化,对比了单偏置与双偏置的传感特性。仿真结果表明,在折射率为1.333 0—1.334 0的范围内,单偏置MZI的折射率灵敏度为-5 557 nm/RIU,而双偏置MZI的折射率灵敏度为-14 071 nm/RIU,该结果为实现高灵敏度液体折射率测量提供了重要理论依据。该传感器结构紧凑,整体长度只有1 200μm,在液体折射率测量领域具有重要的应用价值。  相似文献   

10.
提出了一种基于光纤锥和纤芯失配光纤结构的马赫-曾德尔干涉(MZI)传感器。在距离单模光纤(SMF)锥25mm处熔接一段长30mm的多模渐变光纤(GI MMF),形成SMF-光纤锥-SMFGI MMF-SMF结构。其中,光纤锥起到增加包层模能量的作用,GI MMF为传感臂。传感器外界环境温度、折射率及应力的改变都会使传感器的纤芯基模和包层模的光程差发生改变,从而引起传感器干涉谱发生变化,通过监测干涉谱的变化可以实现对外界物理量的测量。实验研究结果表明,当环境溶液温度在30~89℃范围内变化时,传感器的温度灵敏度为78.6pm/℃,线性度为0.997;环境溶液折射率在1.333~1.394变化范围内,传感器的折射率灵敏度为81.48dB/RIU,线性度为0.989;轴向应变在0~933.3με变化范围内,传感器的应变灵敏度为0.33×10-2 dB/με,线性度为0.998。本文传感器可以实现多个物理量的同时区分测量。  相似文献   

11.
光纤表面等离子体波传感器具有结构简单、灵敏度高等特点,在机敏结构中具有非常重要的应用前景。运用光纤表面等离子体波来测量折射率是一种简便、灵敏的方法,我们可以利用这一特性制作出通过检测折射率对复合材料进行固化检测的光纤表面等离子体波传感器。本文介绍了光纤表面等离子体波传感器的基本原理及利用这种光纤传感器来测量折射率的初步研究。  相似文献   

12.
基于空芯光子晶体光纤的F-P干涉式折射率计   总被引:2,自引:0,他引:2  
提出了一种基于空芯光子晶体光纤(HCPCF)的Fabry-Perot(F-P)干涉式高灵敏度折射率计。利用被测液体进入F-P腔后可改变腔内介质的折射率,从而使得干涉光光程差发生变化这一特点,通过检测光程差的变化就可实现对液体折射率的测量。实验结果表明,对折射率在1.3340~1.3612内变化的不同浓度酒精溶液测量时,光程差变化了9.508μm,其折射率测量灵敏度可达187μm/RI  相似文献   

13.
采用光纤布拉格光栅制备折射率传感器,研究光纤光栅的折射率传感灵敏度与其包层直径之间的关系。理论分析可得,光栅包层直径越小,Bragg波长的偏移量随环境折射率变化的影响越大,这样就能使实验中光栅所反射的LD光功率变化(传感灵敏度)越明显。利用氢氟酸溶液腐蚀光栅包层的方法,得到不同包层直径的光纤Bragg光栅折射率传感器。实验指出,包层直径减小时,光栅可传感的折射率范围会缩小,而其折射率的传感灵敏度却会增大,如包层直径为8.9 μm时,折射率的检测范围为1.3872~1.4730,其最大灵敏度值达到了224.0320 dBm/RIU。  相似文献   

14.
基于飞秒激光制备的光纤Fabry-Perot折射率传感器   总被引:5,自引:5,他引:0  
在对光纤Fabry-Perot(F-P)传感器多光束干 涉原理仿真分析的基础上,利用波长为800nm的飞秒 激光脉冲在普通单模光纤(SMF)上制备微型传感器,并对其折射率响应性能进行了实验测试 。理论分析表明,在低、高折射率区域,F-P传感器的反射谱对比度随着折射率的增加分别 呈现先降低后增加的趋势(折射率高低分界点1.457)。飞秒激光 的制备方法通过计算机控制腔长等可以进行参数可选择的微型光纤F-P传感器的制作。利用 制备的传感器对一系列不同折 射率的溶液进行了折射率响应测试实验,测试结果表明,传感器反射谱对比度对低折射率物 质(折射率小于 1.457)的灵敏度为27.65dB/RI,对高折射 率 物质(折射率大于1.457)的灵敏度为3.50dB /RI,且均具有良好的线性响应。  相似文献   

15.
A novel magnetic field sensor based on optical fiber Mach-Zehnder interferometer (MZI) coated by magnetic fluid (MF) is proposed. The MZI consists of two spherical structures formed on standard single mode fiber (SMF). The interference wavelength and the power of the sensing structure are sensitive to the external refractive index (RI). Since RI of the MF is sensitive to the magnetic field, the magnetic field measurement can be realized by detecting the variation of the interference spectrum. Experimental results show that the wavelength and the power of interference dip both increase with the increase of magnetic field intensity.  相似文献   

16.
设计了一种双通道表面等离子体共振光纤传感器,分析了Au、Cu两种材料对波长调制型表面等离子体共振光纤传感器的影响,优化了金属厚度并且选取优化后的金属厚度dAu=47 nm,dCu=53 nm进行数值仿真分析。结果表明,金属层为金的通道比金属层为铜的通道灵敏度高,但是金属层为铜的通道比金属层为金的通道检测精度高4倍;金属层为金的传感通道适合检测折射率较低的物质,而金属层为铜的传感通道适合检测折射率较高的物质,该传感器的提出扩大了单一传感器的应用范围,并且文中提出的传感器比传统的SPR传感器检测精度高,灵敏度和单通道传感器一样。  相似文献   

17.
聚合物波导马赫-曾德折射率传感器的设计和制备   总被引:1,自引:1,他引:0  
以聚合物ZPU44和ZPU46作为波导包层和芯层材料,设计并制备了基于Mach-Zehnder干涉仪(MZI)的集成折射率传感器。设计并优化了波导截面参数、弯曲半径和传感窗长度等结构参数,分析了其折射率传感特性,进而采用光刻、反应离子刻蚀(RIE)等传统的微加工工艺制备了聚合物MZI折射率传感芯片。测试结果表明,制备的聚合物MZI传感器在1.33~1.44的折射率变化范围内具有较好的线性度,折射率灵敏度约为88dBm/RIU,与设计基本符合。本文的聚合物折射率传感器传感窗长度小,容易实现阵列化,在生化传感领域有很好的应用前景。  相似文献   

18.
为了测量液位在警戒值附近变化的情况, 采用新款光纤熔接机制作了一种基于锥形结构的长周期光纤光栅测量液位的光纤传感器, 对传感器进行了理论分析, 搭建了液位传感实验系统, 根据传感器对外界环境的折射率灵敏度, 测量浸没在液体中的光纤长度。结果表明, 在0 mm~12 mm的液位测量范围内, 光纤液位传感器的峰值波长灵敏度和透射功率灵敏度分别是0.700 nm/mm和1.377 dB/nm。该传感器对液位变化测量较为准确, 且采用刻栅方式可有效解决传统长周期光纤光栅中存在的非对称模耦合和偏振依赖性高等问题, 同时具有制作简单、成本低和应用前景广泛等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号