首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
开展了瑞利测风激光雷达系统性能改进和效率提升研究,改进接收系统光信号的耦合效率、传输效率和采集效率,使改进后的接收机光学效率比原接收机提高1.874倍,解决了系统在紫外波段光学效率低的问题。优化了校准参数,并将标准具表面反射率提高至80%,使激光频率锁定精度满足系统探测精度的需要。增加60m准静态零风速实时校准管道,消除多普勒零点偏移产生的测量误差,提高了系统探测精度。利用改进的瑞利测风激光雷达进行大气风场探测实验,与探空气球相比风速和风向最大相差6.73m/s和24.6°,平均相差1.28m/s和2.65°,获取了多区域高时空分辨率的风场数据,为研究中高层大气变化规律、认识空间环境的区域变化特征提供了必要的数据支持。  相似文献   

2.
研制了应用于中高层大气(15~60 km)多普勒测风激光雷达(DWL)的双模式数据获取系统(DMDAQ)。该系统技术指标达到国际先进水平,不仅满足了中高层大气多普勒测风激光雷达线性动态探测范围大、时空分辨率高的技术要求,而且以其集成度高、可重构的特性满足当前车载DWL研制中小型化和更新升级的需要。为了验证该数据获取系统的性能,进行了风场观测对比实验。结果显示,车载DWL系统对风场观测的结果与气球探测结果在重叠区域(15~35 km)上基本一致。同时,对车载DWL系统的实时回波信号分析显示,在60 km探测高度上的风速测量精度为6 m/s。  相似文献   

3.
方志远  赵明  杨昊  邢昆明  王邦新  陈剑锋  邓旭  程亮亮  谢晨波 《红外与激光工程》2023,52(2):20220412-1-20220412-9
为了实现高精度连续探测对流层和平流层大气风场,搭建了一台直接测风激光雷达系统对对流层和平流层大气风场进行探测。该系统基于双边缘法布里-珀罗标准具的瑞利散射多普勒测风原理,使用转台式探测结构,通过频率跟踪的手段对频率漂移进行跟踪,确保测风的精度。实验结果表明,该系统对对流层和平流层大气风场探测效果良好,频率跟踪的范围为±50 MHz,可以大大减小频率漂移带来的风速误差。经过系统的稳定运行和长时间的观测,在40 km处测得的径向风速随机误差为8 m/s。径向风速合成为水平风速后,随机误差在38 km处最大为10 m/s左右。该系统白天探测高度为25 km,夜晚探测高度为38 km。与探空数据对比,风速误差均小于10 m/s,其中风速误差在±5 m/s的范围内的数据量约占75.8%,探测的风向误差与探空气球的趋势基本一致,误差范围在10°~20°之间,在15°范围内的数据量约占58.6%。将实测数据与探空数据进行统计分析,结果具有良好的一致性。该系统可以为对流层和平流层大气风场的探测提供数据支撑。  相似文献   

4.
直接探测多普勒激光雷达的光束扫描和风场测量   总被引:4,自引:2,他引:4       下载免费PDF全文
介绍了直接探测多普勒激光雷达的系统结构和主要参数,给出了该系统进行大气风场测量的光束扫描方法,详细推导了三维风场的计算公式,给出了其风速和风向误差的求解方法。在径向风速均为1 m/s和扫描角度误差均为1°的情况下,水平风速和风向的误差分别为1.155 m/s和0.707°。给出了合肥地区对流层风场的测量结果,结果表明,采用该方法测量大气风场是切实可行的。  相似文献   

5.
研制了基于双F-P标准具直接探测的地基测风激光雷达.简要回顾了双边缘直接探测技术,介绍了系统结构与控制.为验证系统测量结果的准确性,研制了多普勒校准仪.在+40 m/s动态范围内的校准实验表明:当累计光子数达到2 000时,测风激光雷达系统对靶盘径向转速测量的标准误差为0.6 m/s.风场观测初步对比实验时,测风激光雷达的测量结果与风廓线测量结果一致.给出了24 h连续大气风场观测的结果:风场观测的垂直分辨率为21.2m,每个径向观测的累积时间1 min,当激光雷达扫描视场内有云层时,测风激光雷达的探测高度可达10 km.  相似文献   

6.
周安然  韩於利  孙东松  韩飞  唐磊  蒋杉 《红外与激光工程》2019,48(11):1105006-1105006(7)
近期研发了一套高光学效率全光纤化相干激光雷达设备,可用于风场的实时探测。该相干激光雷达工作于1.55 m波段,望远镜直径50 mm,时间分辨率和距离分辨率分别是1 s和30 m。系统集成了光纤结构的接收单元、可编程扫描模式的两轴扫描头及一个用于实时信号处理的多核数字信号处理器。对系统的测风性能进行了理论分析并同实验结果进行了对比,验证了系统测量距离达到5 km。之后,通过将激光雷达与超声波风速仪数据进行对比验证系统的测量精度。经过数据分析水平风速相关系数达0.980,标准差为0.235 m/s,风向数据相关系数达0.993,标准差为3.105。表明该相干激光雷达具有优良的性能,可以应用于大气边界层内的风场探测。  相似文献   

7.
准确的风场数据对于平流层飞艇实现长时间驻空任务有着重要的安全保障作用。针对20 km高度处空气稀薄的特点,为实现平流层飞艇航行环境的风场探测需求,设计了波长为532 nm的直接探测多普勒光纤激光风速仪。使用双通道法布里-珀罗标准具为鉴频器和波长可调谐的脉冲光纤激光器,完成了系统的结构设计。系统参考了相干测风激光雷达的光路设计,采用收发合置的望远镜设计方案,无探测盲区,接收视场角较小,提高了全天探测的性能。利用液晶相位延迟器的光束偏振特性可实现光路探测方向的控制。以最小的风速探测误差为标准,通过仿真分析选取了法布里-珀罗标准具的各项参数,并对系统的风场探测性能进行了分析。仿真过程中,激光器的平均功率为500 mW,积分时间为10 s,距离分辨率为100 m,分析结果表明,风速误差在500 m探测距离内小于1 m/s,计算得出的风向误差在风速大于10 m/s的情况下,其风向精度优于5°。  相似文献   

8.
合肥对流层风场风廓线雷达测量与分析   总被引:1,自引:1,他引:0  
大气风场是研究气溶胶输送与复合过程以及时空分布变化研究的一个重要方面,也是天气分析和天气预报中的一个重要参数.采用对流层风廓线雷达,连续测量了合肥地区的对流层大气风场.统计了2009年合肥地区风场变化,得到了一些统计结果:边界层(2 km以下)风速基本小于5 m/s,风向变化复杂,不同季节风向略有不同;对流层风速多在5...  相似文献   

9.
高低空一体化测风激光雷达   总被引:2,自引:2,他引:0       下载免费PDF全文
高时空分辨率的大气风场探测对提高数值天气预报的准确性、大气动力学过程的研究、气候研究等具有很重要的意义。介绍了基于双Fabry-Perot标准具的直接接收激光多普勒测量原理。提出了40 km的高低空大气风场同时观测的技术方法。给出了利用大气气溶胶和分子散射信号的Mie-Rayleigh多普勒测风激光雷达的系统结构,并分析了工作波长、望远镜口径、扫描天顶角和标准具参数等激光雷达系统参数。研究了扫描角度误差、气溶胶后向散射信号、大气温度对风场探测精度的影响。分析了雷达系统的总体性能,得出在40 km高度处,当距离分辨率为500 m、时间分辨率为30 min时,水平风速探测精度优于6 m/s,可以满足有关应用的要求。  相似文献   

10.
提出了基于单固体Fabry-Perot(F-P)标准具的双频率多普勒激光雷达技术。介绍了系统结构,并分析了系统的风场探测原理。根据探测指标要求,对系统各单元参数,特别是F-P标准具参数进行了详细的优化设计。利用得到的优化参数对雷达系统的探测性能进行了仿真。仿真结果表明:采用100 mm口径的望远镜和脉冲能量50 J、重复频率6 kHz的半导体激光器,在发射激光仰角60、距离分辨率60 m和脉冲累计时间1 min的情况下,晴天时,系统在3 km高度处的径向风速误差小于0.75 m/s;有薄雾时,系统在1.5 km高度处的径向风速误差小于0.58 m/s。在发射激光仰角8、距离分辨率60 m和脉冲累积时间10 s的情况下,不同的能见度天气时,系统在4 km处的径向风速误差都小于1 m/s。  相似文献   

11.
为了精确观测平流层风场,采用F-P标准具作为瑞利散射测风激光雷达多普勒频率检测的核心器件,对F-P标准具多普勒频率检测原理进行了理论分析,从分析最大设计高度时的测量误差着手,优化选取标准具透过率曲线参量;介绍了透过率曲线参量的校准过程和校准方法,分析了导致透过率曲线的半峰全宽增大的原因、透过率曲线校准精度对速度灵敏度及系统探测误差的影响;并通过实验对设计和校准结果进行了验证。结果表明,由于透过率曲线的半峰全宽增大,导致速度灵敏度下降了0.118%/(m·s-1);40km高度处,在测量信噪比大于10的条件下,径向速度测量精度增大2m/s。  相似文献   

12.
储嘉齐  韩於利  孙东松  赵一鸣  刘恒嘉 《红外与激光工程》2022,51(9):20210831-1-20210831-9
星载测风激光雷达可以提供全球范围高实时性、高精度、高分辨率的大气风场信息,已经被认为是解决全球化风场观测的最佳手段。我国也在积极开展星载多普勒测风激光雷达相关研究工作。针对400 km高度的卫星轨道,设计并研制了一套多普勒直接测风激光雷达光学接收机,结合双边缘检测原理和星载平台相关技术参数,对Fabry-Perot标准具的主要参数进行设计。为了满足星载平台对稳定性和小型化的需求,接收机中主要光学元件之间采用分子粘接方式紧密连接。整个光学接收机集成在450 mm×300 mm×80 mm密闭箱体中,内部光学元件采用倒插方式沉入接收机壳体的凹槽内,整体结构稳定可靠,集成度高。通过改变激光波长的方式扫描Fabry-Perot标准具的透过率曲线,对所研制的接收机进行了性能测试。并由透过率曲线的实测参数对接收机的测风性能进行仿真,仿真结果显示在30 km处的最大风速误差为2.94 m/s。并进一步分析了接收机带宽增宽对测风精度的影响,分析结果显示带宽偏差为0.43 pm时,会引起1 m/s的风速误差增量。  相似文献   

13.
介绍了已研制的基于Fabry-Perot标准具直接探测多普勒激光雷达的风速测量原理,讨论了接收光路光束发散角对测风激光雷达系统测量精度的影响.数值计算结果表明当接收光路光束发散角小于1 mrad时,由于光束发散引起的多普勒速度测量相对误差可以控制在5%之内,并在实测光路发散角的基础上分析了系统的测量误差,结果显示,在5 km时最大测量速度误差为0.6 m/s.  相似文献   

14.
闫召爱  胡雄  郭文杰  郭商勇  程永强  张炳炎  陈志芳  赵尉博 《红外与激光工程》2021,50(3):20210100-1-20210100-10
研制了车载钠荧光散射多普勒激光雷达和车载532 nm瑞利散射多普勒激光雷达用于测量临近空间大气温度和风场。在钠荧光散射多普勒激光雷达中使用了三频比率多普勒测量方法获得80~100 km的温度和风场。在532 nm瑞利散射多普勒激光雷达中,使用碘分子吸收线边缘技术测量70 km 以下的风场,使用积分方法测量80 km以下的温度。在距离分辨率为1 km、时间分辨率为1 h情况下,40 km处的大气温度、风速测量不确定度约为0.2 K和0.4 m/s;70 km处约为1.5 K和5.5 m/s;92 km处约为0.3 K和1.0 m/s。这两部激光雷达已经在北京、青海、甘肃等地进行了长期观测,应用于临近空间环境特性研究。  相似文献   

15.
1.06 μm多普勒激光雷达的低对流层风场测量   总被引:3,自引:5,他引:3       下载免费PDF全文
介绍了一套基于双边缘检测技术的1 064 nm Mie 多普勒测风激光雷达系统。采用Farbry?蛳Perot标准具作为频率检测器,分析了风场中大气气溶胶运动造成的多普勒频移。利用转盘硬目标的速度校准系统对接收机校准,在±40 m/s的径向速度范围内,校准精度小于1%。给出了从2006年4月23日起连续八天的风场测量结果。  相似文献   

16.
1.06μm直接接收米散射测风激光雷达的性能分析   总被引:4,自引:0,他引:4  
介绍了基于Fabry2Perot 标准具的直接接收米散射1064nm 测风激光雷达的工作原理, 设计了利用该原理进行风场测量的激光雷达,并估算了该系统的设计性能,进行了系统测量误差分析,结果表明:高度在10km 内和风速测量的动态范围内的误差小于2m/ s ,测量精度随径向测量速度的增大而下降,在低对流层的测量精度、分辨率和测量时间在目前的系统参数条件下还可以提高。  相似文献   

17.
利用北京国家基本气象站内多普勒测风激光雷达和 L 波段探空系统在 2020 年 1 月 1 日至 5 月 31 日期间进 行了同步观测试验, 在经过观测数据时间和空间匹配的基础上, 以后者测风数据为参照标准, 从探测风廓线的高度、 风向和风速三个方面的一致性分析了激光雷达的测风数据质量。结果显示: 在观测试验期间, 激光雷达 56.5% 的观测 时间里最大探测高度不低于 2000 m, 2.9% 的观测时间最大探测高度不足 1000 m; 激光雷达探测获取的水平风向、风 速与 L 波段探空系统具有较好的一致性, 针对匹配得到的 8491 组对比观测数据, 其风向和风速数据拟合总相关系数 分别为 0.965 和 0.986; 总体风向、风速的平均偏差和均方根误差分别为 −1.3◦ 和 16.1◦、0.21 m·s −1 和 1.06 m·s −1 ; 在 2000 m 以上高度, 由于激光雷达观测数据的信噪比偏弱, 获得可信的观测数据量减少, 会对风向、风速一致性比对造 成不利影响。  相似文献   

18.
临近空间风场的探测,在大气动力学研究和提高数值天气预报的准确性,以及航空航天保障等方面具有重要意义。研制基于瑞利散射双边缘技术的60 km多普勒激光雷达用于临近空间大气风场的测量。激光雷达主要分为垂直指向测量系统和两台斜指向测量系统。工作波长355 nm,探测距离15~60 km。为验证系统的可靠性和积累风场观测数据,于2014年下半年进行了外场实验,并与当地的探空气球数据进行对比,结果显示60 km瑞利多普勒激光雷达风场测量数据与探孔气球数据具有良好的一致性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号