首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
Device-to-device (D2D) multicast communication is a useful way to improve the communication efficiency of local services. This study considers a scenario of D2D multicast communication in software defined cellular network and investigates the frequency resource allocation problem. Firstly, we build the system model and formulate the optimization problem. Secondly, a hierarchical scheme to achieve a suboptimal solution is proposed. To select appropriate user equipments (UEs) as potential D2D transmitters (PDTs), a social aware PDT selection method is proposed. Then, a resource allocation algorithm considering users’ priorities is proposed. Furthermore, to study the resource allocation for general system that UEs without priorities, a non-priority considered allocation algorithm is proposed also. Numerical simulation results show that the proposed schemes are effective in improving the system utility and reducing the resource consuming for D2D communications.  相似文献   

2.
In thsssse cellular network, Relay Stations (RSs) help to improve the system performance; however, little work has been done considering the fairness of RSs. In this paper, we study the cooperative game approaches for scheduling in the wireless relay networks with two-virtual-antenna array mode. After defining the metric of relay channel capacity, we form a cooperative game for scheduling and present the interpretation of three different utilization objectives physically and mathematically. Then, a Nash Bargaining Solution (NBS) is utilized for resource allocation considering the traffic load fairness for relays. After proving the existence and uniqueness of NBS in Cooperative Game (CG-NBS), we are able to resolve the resource allocation problem in the cellular relay network by the relay selection and subcarrier assignment policy and the power allocation algorithm for both RSs and UEs. Simulation results reveal that the proposed CG-NBS scheme achieves better tradeoff between relay fairness and system throughput than the conventional Maximal Rate Optimization and Maximal Minimal Fairness methods.  相似文献   

3.
This paper studies the joint relay selection and spectrum allocation problem for multi-user and multi-relay cellular networks, and per-user fairness and system efficiency are both emphasized. First, we propose a new data-frame structure for relaying resource allocation. Considering each relay can support multiple users, a \(K\) -person Nash bargaining game is formulated to distribute the relaying resource among the users in a fair and efficient manner. To solve the Nash bargaining solution (NBS) of the game, an iterative algorithm is developed based on the dual decomposition method. Then, in view of the selection cooperation (SC) rule could help users achieve cooperation diversity with minimum network overhead, the SC rule is applied for the user-relay association which restricts relaying for a user to only one relay. By using the Langrangian relaxation and the Karush–Kuhn–Tucker condition, we prove that the NBS result of the proposed game just complies with the SC rule. Finally, to guarantee the minimum rate requirements of the users, an admission control scheme is proposed and is integrated with the proposed game. By comparing with other resource allocation schemes, the theoretical analysis and the simulation results testify the effectiveness of the proposed game scheme for efficient and fair relaying resource allocation.  相似文献   

4.
This paper investigates the energy efficient resource allocation when adding dedicated device-to-device (D2D) communication in the co-located antenna systems (CAS). We consider the user equipments (UEs) are changing over time and the appropriate potential UEs to form D2D pairs are varying with time. Our optimization objective is to maximize the system’s energy efficiency (EE) with the constraints of the maximum transmit power of UEs and D2D pairs in different total power consumption models. Firstly, an algorithm is developed to choose appropriate potential UEs to form D2D pairs in this paper. Then we exploit fractional programming method to obtain optimal energy efficient power allocation solutions. Simulation results are provided to demonstrate the effectiveness of the developed D2D pairs choosing algorithm and the power allocation algorithm.  相似文献   

5.
In this paper, we study the problem of distributed relay selection in wireless networks using a game theoretic approach. Specifically, we consider a system model where one relay node can be shared by multiple source-destination pairs. Our objective is to find the relay selections of source nodes to optimize the total capacity. The relay selection problem is formulated as a congestion game with player-specific payoff functions and the existence of Nash equilibrium (NE) is demonstrated. Then we propose a stochastic learning automata (SLA) based distributed relay selection approach to obtain the NE without information exchange among source nodes. Simulation results show that the proposed distributed relay selection approach achieves satisfactory performance, when compared with other solutions.  相似文献   

6.
This paper addresses the research question of total system interference minimization while maintaining a target system sum rate gain in an inband underlay device‐to‐device (D2D) communication. To the best of our knowledge, most of the state of the art research works exploit offline resource allocation algorithms to address the research problem. However, in Long‐Term Evolution (LTE) and beyond systems (4G, 5G, or 5G+), offline resource allocation algorithms do not comply with the fast scheduling requirements because of the high data rate demand. In this paper, we propose a bi‐phase online resource allocation algorithm to minimize the total system interference for inband underlay D2D communication. Our proposed algorithm assumes D2D pairs as a set of variable elements whereas takes the cellular user equipment (UEs) as a set of constant elements. The novelty of our proposed online resource allocation algorithm is that it incurs a minimum number of changes in radio resource assignment between two successive allocations among the cellular UEs and the D2D pairs. Graphical representation of the simulation results suggests that our proposed algorithm outperforms the existing offline algorithm considering number of changes in successive allocation for a certain percentage of sum rate gain maintaining the total system interference and total system sum rate very similar.  相似文献   

7.
In a public safety environment, user equipments (UEs) located within the coverage area of evolved NodeB, relay network services to out-of-coverage UEs. However, relay UEs in public safety environments are typically energy constrained and cannot operate indefinitely without recharging. Radio frequency energy harvesting has been proposed as a solution for recharging wireless UEs. In this paper, we propose a scheme for extending the lifetime of a public safety network by wirelessly charging relay UEs. In addition, we propose a relay selection method considering the battery status of relay UEs. The proposed relay selection is defined as a bipartite graph matching problem and the optimal relay is obtained through matching games technique. The proposed scheme not only improves the network lifetime but also extend the network coverage. We also conduct system level simulations to evaluate the performance of the proposed scheme. Simulation results show that the overall performance of the system is improved in terms of achievable throughput and network lifetime.  相似文献   

8.
曹型兵  王伟超 《电讯技术》2017,57(12):1433-1439
为优化蜂窝用户通信与设备直传(D2D)中继通信共存下的同频干扰问题,满足蜂窝用户容量要求,提出了一种基于能效的联合资源分配和功率控制的D2 D中继选择算法.该算法首先对等效D2 D中继链路进行资源分配,减小算法复杂度的同时使得D2 D链路对蜂窝链路产生的干扰最小;然后以资源分配结果和功率控制算法为依据进行中继选择.该方案不仅考虑了D2 D中继链路的能效问题,而且还同时考虑到了对蜂窝链路的干扰问题.通过仿真验证,所提算法不仅能有效提升D2 D中继链路的能效值,同时降低了对蜂窝用户的干扰.  相似文献   

9.
This letter considers the problem of resource sharing between two selfish nodes in cooperative relay networks. In our system, each node can act as a source as well as a potential relay, and both nodes are willing to achieve an optimal signalto- noise ratio (SNR) increase by adjusting their power levels for cooperative relaying. We formulate this problem as a two-person bargaining game, and use the Nash bargaining solution (NBS) to achieve a win-win strategy for both nodes. Simulation results indicate the NBS resource sharing is fair in that the degree of cooperation of a node only depends on how much contribution its partner can make to its SNR increase.  相似文献   

10.
The performance in cooperative communication depends on careful resource allocation such as relay selection and power control, but the traditional centralized resource allocation requires precise measurements of channel state information (CSI). In this paper, we propose a distributed game-theoretical framework over multiuser cooperative communication networks to achieve optimal relay selection and power allocation without knowledge of CSI. A two-level Stackelberg game is employed to jointly consider the benefits of the source node and the relay nodes in which the source node is modeled as a buyer and the relay nodes are modeled as sellers, respectively. The proposed approach not only helps the source find the relays at relatively better locations and "buy” an optimal amount of power from the relays, but also helps the competing relays maximize their own utilities by asking the optimal prices. The game is proved to converge to a unique optimal equilibrium. Moreover, the proposed resource allocation scheme with the distributed game can achieve comparable performance to that employing centralized schemes.  相似文献   

11.
张永棠  赵元成 《电讯技术》2021,61(10):1250-1256
为了解决设备对设备(Device-to-Device,D2D)资源共享带来的信号干扰问题,提出了一种5G异构云无线接入网络的D2D通信资源分配算法.在保证服务质量的前提下,将宏用户设备的频谱资源分配给D2D和中继用户设备,并且把资源分配问题看作一对一的匹配博弈.采用婚姻匹配理论,得到初始的匹配方案.在初始匹配的基础上,提出了一种遵循卡尔多-希克斯(Kaldor-Hicks)原则的资源交换策略,以提高系统的吞吐量.仿真结果表明,该资源分配算法收敛较快,与现有方案相比,能使系统吞吐量提升15%以上,能给系统用户带来约10%的增益,并且有较强抗信道干扰能力.  相似文献   

12.
This paper studies the resource allocation (RA) and the relay selection (RS) problems in cooperative relaying (CR) based multiuser ad hoc networks, and a multiuser cooperative game is proposed to stimulate selfish user nodes to participate in the CR. The novelty of the game scheme lies in that it takes explicit count of that a wireless user can act as a data-source as well as a potential relay for other users. Consider a user has the selfish incentive to consume his/her spectrum resource solely to maximize his/her own data-rate and the selection cooperation (SC) rule which restricts relaying for a user to only one relay is explicitly imposed. To stimulate user nodes to share their energy and spectrum resource efficiently in the Pareto optimal sense, first, we formulate the RA problem for multiuser CR as a bargaining game. By solving the Nash bargaining solution of the game, Pareto optimal RA for cooperative partners can be achieved. Next, to implement the SC-rule imposed RS, a simple heuristic is proposed with the main method being to maintain the long-term priority fairness for cooperative partner selection for each selfish user. The proposed RS with RA (RS-RA) algorithm has a low computational complexity of $O(K^{2})$ , where $K$ is the number of users in a network. Simulation results demonstrate the system efficiency and fairness properties of the proposed bargaining game theoretic RS-RA scheme.  相似文献   

13.
载波聚合是LTE-Advanced系统的关键技术之一。文章中重点介绍了载波聚合中的移动性无线资源管理(RRM:Radio Resource Manage-ment)机制。在引入该机制的基础上,传统的正比公平(PF:proportional fair)调度算法并不能够很好地保证用户之间在资源分配方面的公平性,因此提出了Balanced PF(BPF)算法。从系统级仿真结果可以看出,与传统的PF算法相比,BPF算法可以提升边缘用户的吞吐量性能,改善用户之间的公平性。  相似文献   

14.
针对无线功率传输技术的能量收集效率有限造成信噪比下降进而引发通信中断率增加的问题,在能量收集多跳D2D(Device to Device)无线传感网络中,提出一种基于改进K-means聚类的中继选择方法。首先,推导得到能量收集下的信噪比因子,使其作为K-means聚类特征。然后,利用最小欧氏距离原则得到距离聚类中心最近的实际节点的位置。最后,根据距离重排序得到中继节点,形成从源节点到目的节点的通信链路。仿真实验结果表明,相比最短路径算法和随机中继协作方案,所提出的改进算法链路信噪比更大,能够减小通信中断率,具有更好的中继性能。  相似文献   

15.
In this paper, distributed single relay selection in cooperative wireless networks is modeled as a Chinese restaurant game (CRG). Specifically, the CRG is used to model strategic relay selection decisions of source nodes, taking into account negative network externality due to the potential sharing of relay nodes among source nodes. Two cases are studied as follows: (i) perfect relay transmit power (RTP) knowledge and (ii) imperfect RTP knowledge. Under the first case, a distributed relay selection algorithm is proposed and shown to converge to a Nash equilibrium grouping. Under the second case, a reinforcement learning algorithm is proposed and combined with the distributed relay selection algorithm to allow network nodes to select rate‐maximizing relays. Simulation results verify the efficiency of the proposed distributed relay selection algorithm when compared with other relay selection schemes and demonstrate that it yields a network sum‐rate that is comparable with that of centralized relay selection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
针对分层匹配博弈不能跟踪信道变化以及循环迭代收敛慢等问题,该文提出一种基于信道定价的无线虚拟网络资源分配策略:匹配/Stackelberg分层博弈。分别以基于流带宽的用户满意度、系统带宽及切片功率作为报酬函数建立3级联合优化模型,并采用匹配/Stackelberg分层博弈求解。在博弈下层,定义移动虚拟网络操作者(MVNOs)m—切片n对mn及其与用户(UEs)的1对1匹配博弈以代替UEs与MVNOs的多对1匹配,对\begin{document}${m_n}$\end{document}定义基于信道平均信息的切片功率价格,加速上、下一致收敛并使UEs适应信道选择最优,证明均衡点存在并给出了低复杂度的分布式拒绝-接收算法;在博弈上层,基于UEs与已匹配关系,形成基础资源提供者(InPs)与的Stackelberg博弈,给出了基于局部信道信息的功率定价和分配策略,使系统效用及频谱效率基于信道最优。最后定义了双层循环稳定条件及过程。仿真表明,该策略在信道跟踪、频谱效率、效用方面均优于随机定价的匹配/Stackelberg分层博弈以及传统分层匹配博弈。  相似文献   

17.
Using full‐duplex relaying in device‐to‐device (D2D) communication, spectrum efficiency can be further improved as compared with traditional half‐duplex relaying. Due to the increasing demands for more system capacities and higher data rate, a throughput‐guaranteed and power‐aware relay selection mechanism is essential so that services can be successfully accomplished within tolerable power consumption. It is also imperative to prevent cellular users from interfering and preserve resources for more users at the same time. In current paper, we proposed an efficient relay selection scheme with subchannel reusing. Using the nonconflict group discovery algorithm, firstly, we divided D2D pairs into different groups based on the neighbor lists of all the devices. The D2D pairs in the same group were considered nonconflictive. By building a matrix that represents the power consumption of D2D transmission peers through relays, we proposed a group‐oriented relay selection scheme based on the Hungarian method allowing subchannel reuse over relay‐assisted D2D networks. Applying this mechanism, different D2D pairs are able to transmit messages at the same subchannel, whenever they are in the same group. Better throughput and spectrum usage than currently available relay selection schemes without subchannel reusing can be obtained. Particularly, more D2D pairs in high dense networks can be accommodated, and spectrum resources can be better preserved. The simulation results showed that our proposed mechanism can improve the total throughput by up to 35% as compared with an existing relay selection scheme without subchannel reusing, called as PRS‐D2D, when most D2D pairs are in a few groups.  相似文献   

18.
在基于设备直传(D2D)通信的中继系统中,提出了一种基于社交感知的增强型中继选择策略.该策略首先在D2D中继网络中引入社交门限值,对潜在中继用户进行筛选和过滤,从而有效降低了探测成本;然后利用最优停止理论实现了最优中继节点的选择.仿真结果表明,与已有中继选择策略相比,所提出的策略能够以较少的中继探测次数获得较高的系统性能收益,从而实现能耗与收益之间的折中.  相似文献   

19.
Feng  Kai-Ten  Li  Pei-Rong  Chang  Tain-Sao  Chang  Wan-Pan  Lin  Jia-Shi 《Wireless Networks》2017,23(5):1629-1644

This paper studies the problem of joint allocation of subchannel, transmission power, and phase duration in the relay-enhanced bidirectional orthogonal frequency-division multiple access time division duplex systems. The challenges of this resource allocation problem arise from the complication of multiple-phase assignments within a subchannel since the relay station can provide an additional signal path from the base station to the user equipments (UEs). Existing research work does not fully consider all the influential factors to achieve feasible resource allocation for the relay-based networks. Since energy consumption is one of the principal issues, the energy minimization resource allocation (EMRA) schemes are proposed in this paper to design the allocation of subchannel, power, and phase duration for the UEs with the consideration of UE’s quality-of-service (QoS) requirements. Both the four-phase and two-phase bidirectional relaying assignments and the network coding technique are adopted to obtain the suboptimal solutions for the proposed EMRA schemes. Different weights are designed for the UEs to achieve the minimization of weighted system energy for the relay-enhanced networks. Simulation results show that the proposed EMRA schemes can provide comparably better energy conservation and outage performance with QoS support.

  相似文献   

20.
This letter considers the problem of resource sharing among a relay and multiple user nodes in cooperative transmission networks. We formulate this problem as a sellers’ market competition and use a noncooperative game to jointly consider the benefits of the relay and the users. We also develop a distributed algorithm to search the Nash equilibrium, the solution of the game. The convergence of the proposed algorithm is analyzed. Simulation results demonstrate that the proposed game can stimulate cooperative diversity among the selfish user nodes and coordinate resource allocation among the user nodes effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号