首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A W-band subharmonically pumped (SHP) diode mixer is designed for fixed LO frequency operation. It is fabricated on a 4-mil substrate using 0.15 μm GaAs PHEMT MMIC process. The on-wafer measurement results show that the conversion loss is about 10 to 14 dB across the W band, as a 10 dBm 48 GHz LO signal is pumped. To our knowledge, this is the state-of-the-art result on low-conversion-loss wideband MMIC SHP diode mixer. The packaged module measurement shows a similar result. Both the simulation and measurement results are shown to be in good agreement  相似文献   

2.
In this paper, we report on the development of W-band monolithic microwave integrated circuit (MMIC) power amplifiers using 0.1-μm AlInAs/GaInAs/InP high electron mobility transistor (HEMT) technology and finite-ground coplanar waveguide (FGCPW) designs. In the device modeling, the Angelov nonlinear HEMT model was employed to predict the large signal performance of the device, and the results were validated by using state-of-the-art vector load-pull measurements. A two-stage single-ended W-band FGCPW MMIC using a 150-μm-wide HEMT as the driver and a 250-μm-wide HEMT for the output stage was designed, fabricated, and tested. The MMIC amplifier demonstrates a maximum output power of 18.6 dBm with 18.2% power-added efficiency and 10.6 dB associated gain at 94 GHz. This result is the best output power to date reported from an InP-based MMIC using FGCPW design at this frequency  相似文献   

3.
A wideband MMIC power amplifier at W-band is reported in this letter. The four-stage MMIC, developed using 0.1 μm GaAs pseudomorphic HEMT (PHEMT) technology, demonstrated a flat small signal gain of 12.4±2 dB with a minimum saturated output power (Psat) of 14.2 dBm from 77 to 100 GHz. The typical Psat is better by 16.3 dBm with a flatness of 0.4 dB and the maximum power added efficiency is 6% between 77 and 92 GHz. This result shows that the amplifier delivers output power density of about 470 mW/mm with a total gate output periphery of 100 μm. As far as we know, it is nearly the best power density performance ever published from a single ended GaAs-based PHEMT MMIC at this frequency band.  相似文献   

4.
W及以上波段MMIC放大器的研究进展   总被引:3,自引:1,他引:2  
在阐述W及以上波段MMIC放大器性能的基础上,回顾了以InP HEMT MMIC放大器为主流技术的W及以上波段MMIC放大器的研究进展,介绍了基于InP HBT、GaAs MHEMT和SbHEMT的MMIC放大器的研制水平,指出目前研制的W及以上波段MMIC放大器的应用领域,突显其在MMIC高端技术领域的重要性.针对欧美国家在该领域飞速发展而我国处于相对劣势的现状,对我国研发W及以上波段MMIC放大器提出初步建议.  相似文献   

5.
We report the first demonstration of W-band metamorphic HEMTs/LNA MMICs using an AlGaAsSb lattice strain relief buffer layer on a GaAs substrate. 0.1×50 μm low-noise devices have shown typical extrinsic transconductance of 850 mS/mm with high maximum drain current of 700 mA/mm and gate-drain breakdown voltage of 4.5 V. Small-signal S-parameter measurements performed on the 0.1-μm devices exhibited an excellent fT of 225 GHz and maximum stable gain (MSG) of 12.9 dB at 60 GHz and 10.4 dB at 110 GHz. The three-stage W-band LNA MMIC exhibits 4.2 dB noise figure with 18 dB gain at 82 GHz and 4.8 dB noise figure with 14 dB gain at 89 GHz, The gain and noise performance of the metamorphic HEMT technology is very close to that of the InP-based HEMT  相似文献   

6.
A family of millimeter-wave sources based on InP heterojunction bipolar transistor (HBT) monolithic microwave/millimeter-wave integrated circuit (MMIC) technology has been developed. These sources include 40-GHz, 46-GHz, 62-GHz MMIC fundamental mode oscillators, and a 95-GHz frequency source module using a 23.8-GHz InP HBT MMIC dielectric resonator oscillator (DRO) in conjunction with a GaAs-based high electron mobility transistor (HEMT) MMIC frequency quadrupler and W-band output amplifiers. Good phase noise performance was achieved due to the low 1/f noise of the InP-based HBT devices. To our knowledge, this is the first demonstration of millimeter-wave sources using InP-based HBT MMIC's  相似文献   

7.
利用改进的小信号模型对采用100nmInAlAs/InGaAs/InP工艺设计实现的PHEMTs器件进行建模, 并设计实现了一款W波段单片低噪声放大器进行信号模型的验证。为了进一步改善信号模型低频S参数拟合差的精度, 该小信号模型考虑了栅源和栅漏二极管微分电阻, 在等效电路拓扑中分别用Rfs和Rfd表示.为了验证模型的可行性, 基于该信号模型研制了W波段低噪声放大器单片.在片测试结果表明:最大小信号增益为14.4dB@92.5GHz, 3dB带宽为25GHz@85-110GHz.而且, 该放大器也表现出了良好的噪声特性, 在88GHz处噪声系数为4.1dB, 相关增益为13.8dB.与同频段其他芯片相比, 该放大器单片具有宽3dB带宽和高的单级增益.  相似文献   

8.
A MMIC 77-GHz two-stage power amplifier (PA) is reported in this letter. This MMIC chip demonstrated a measured small signal gain of over 10 dB from 75 GHz to 80 GHz with 18.5-dBm output power at 1 dB compression. The maximum small signal gain is above 12 dB from 77 to 78 GHz. The saturated output power is better than 21.5 dBm and the maximum power added efficiency is 10% between 75 GHz and 78 GHz. This chip is fabricated using 0.1-/spl mu/m AlGaAs/InGaAs/GaAs PHEMT MMIC process on 4-mil GaAs substrate. The output power performance is the highest among the reported 4-mil MMIC GaAs HEMT PAs at this frequency and therefore it is suitable for the 77-GHz automotive radar systems and related transmitter applications in W-band.  相似文献   

9.
报道了毫米波应用的0.15μm场板结构GaN HEMT。器件研制采用了76.2mm(3英寸)SiC衬底上外延生长的AlGaN/GaN异质结构材料,该材料由MOCVD技术生长并引入了掺Fe GaN缓冲层技术以提升器件击穿电压。器件栅脚和集成了场板的栅帽均由电子束光刻实现,并采用栅挖槽技术来控制器件夹断电压。研制的2×75μm栅宽GaN HEMT在24V工作电压、35GHz频率下的负载牵引测试结果显示其输出功率密度达到了4W/mm,对应的功率增益和功率附加效率分别为5dB和35%。采用该0.15μm GaN HEMT技术进行了Ka波段GaN功率MMIC的研制,所研制的功率MMIC在24V工作电压下脉冲工作时(100μs脉宽、10%占空比),29GHz频点处饱和功率达到了10.64W。  相似文献   

10.
We report high switching performance of 0.1-/spl mu/m metamorphic high-electron mobility transistors (HEMTs) for microwave/millimeter-wave monolithic integrated circuit (MMIC) resistive mixer applications. Very low source/drain resistances and gate capacitances, which are 56 and 31% lower than those of conventional pseudomorphic HEMTs, are due to the optimized epitaxial and device structure. Based on these high-performance metamorphic HEMTs, a 94-GHz MMIC resistive mixer was designed and fabricated, and a very low conversion loss of 8.2 dB at a local oscillator power of 7 dBm was obtained. This is the best performing W-band resistive field-effect transistor mixer in terms of conversion loss utilizing GaAs-based HEMTs reported to date.  相似文献   

11.
A D‐band subharmonically‐pumped resistive mixer has been designed, processed, and experimentally tested. The circuit is based on a 180° power divider structure consisting of a Lange coupler followed by a λ/4 transmission line (at local oscillator (LO) frequency). This monolithic microwave integrated circuit (MMIC) has been realized in coplanar waveguide technology by using an InAlAs/InGaAs‐based metamorphic high electron mobility transistor process with 100‐nm gate length. The MMIC achieves a measured conversion loss between 12.5 dB and 16 dB in the radio frequency bandwidth from 120 GHz to 150 GHz with 4‐dBm LO drive and an intermediate frequency of 100 MHz. The input 1‐dB compression point and IIP3 were simulated to be 2 dBm and 13 dBm, respectively.  相似文献   

12.
A high-gain InP MMIC cascode distributed amplifier was developed which has 12 dB of gain from 5 to 60 GHz with over 20-dB gain control capability and a noise figure of 2.5-4 dB in the Ka band. Lattice-matched InAlAs/InGaAs cascode HEMTs on InP substrate with 0.25-μm gate length were the active devices. Microstrip was the transmission medium for this MMIC with an overall chip dimension of 2.3 mm×0.9 mm. The gain/noise figure advantages of the InP HEMT over the AlGaAs HEMT and the superior gain performance of the cascode HEMT over the common-source HEMT are demonstrated  相似文献   

13.
A W-band source module using MMIC's   总被引:1,自引:0,他引:1  
A W-band source module providing 4-GHz tuning bandwidth (92.5-96.5 GHz) has been developed. This module consists of three MMIC chips: a 23.5 GHz HBT VCO, a 23.5-94 GHz HEMT frequency quadrupler and a W-band three-stage HEMT output amplifier, all fabricated in TRW production lines. It exhibits a measured output power of 3 dBm at 94-95 GHz and a 3-dB tuning bandwidth greater than 3 GHz, with a phase noise of -92 dBc/Hz at 1 MHz offset. This work demonstrates a new and efficient way to implement high performance W-band source. Its wide tuning bandwidth with good phase noise performance, as well as design simplicity, makes this approach attractive for many W-band system applications  相似文献   

14.
This paper describes the design, fabrication, and measurement of a wideband 60 GHz monolithic microwave integrated circuit (MMIC) power amplifier that has demonstrated via on-wafer continuous wave (CW) measurement a record 43% power-added efficiency (PAE) at an associated output power of 224 mW and 7.5 dB of power gain. At a higher drain bias of 3.5 V, the CW output power increased to 250 mW with 38.5% PAE. Additional performance improvement is expected when the MMICs are tested on-carrier with proper heat sinking. These state-of-the-art first-pass design results can be attributed to: 1) the use of a fully selective gate recess etch 0.12-μm InP HEMT process fabricated on 2-mm-thick 3-in diameter InP substrates with slot via holes; 2) a design based on a novel on-wafer load-pull measurement technique; and 3) an accurate large-signal nonlinear model for InP HEMTs. In order to reach the low cost required for mass production, the same MMIC design was fabricated on an InP metamorphic HEMT (MHEMT) process. The MHEMT version of the MMIC demonstrated 41.5% PAE, with an associated output power of 183 mW (305 mW/mm) and 6.9 dB of power at 60 GHz when measured CW on-wafer. These InP HEMT and MHEMT results are, to our knowledge, the highest PAE and power bandwidth ever reported at V-band  相似文献   

15.
State-of-the-art power performance of a V-band InP HEMT MMIC is reported using a slot via process for reducing source inductance and a fully selective gate recess process for uniformity and high yield. The 0.1 μm gate length, high performance InGaAs/InAlAs/InP HEMTs that were utilized in the circuit exhibited a maximum power density of 530 mW/mm, power added efficiency of 39%, and a gain of 7.1 dB. At 60 GHz, a single-stage monolithic power amplifier achieved an output power of 224 mW with a PAE of 43%. The associated gain was 7.5 dB. These results are the best combination of output power and efficiency reported for an InP device and a MMIC at V-band, and clearly demonstrates the potential of the InP HEMT technology for very high efficiency, millimeter wave power applications  相似文献   

16.
A highly integrated wideband converter that was designed to upconvert the entire 6- to 18-GHz input RF frequency band to a 22-GHz intermediate frequency using a 28- to 40-GHz local oscillator (LO) is described. The circuit was designed using 0.25-μm pseudomorphic HEMT technology. The converter incorporates a three-stage RF amplifier, a three-stage LO amplifier, and an active balanced mixer, all integrated on a chip 96 mil×96 mil in size. The upconverter monolithic microwave integrated circuit (MMIC) has an average of 10-dB conversion gain across the full 6-18-GHz input band  相似文献   

17.
Monolithic approaches of the development to V-band frequency converters have the advantages of lighter weight and lower cost over conventional hybrid approaches for high volume insertions into satellite communication systems. This paper presents the design, fabrication, and performance of a monolithic V-band frequency converter chip set using 0.2 μm AlGaAs/InGaAs/GaAs pseudomorphic HEMT technology. This chip set consists of three monolithic macrocells and a microcell: an upconverter, a downconverter, and a frequency multiplier for LO signal. A monolithic balanced amplifier microcell is also used to form the LO chain. Individual components, including amplifiers, mixer, and frequency doublers are also described. The superb measured results obtained from this chip set show great promise of the MMIC insertions for the system applications, and represent state-of-the-art performance of MMIC at this frequency  相似文献   

18.
X波段GaN单片电路低噪声放大器   总被引:1,自引:1,他引:0  
采用0.25μm GaN HEMT制备工艺在AlGaN/GaN异质结材料上研制了高性能X波段GaN单片电路低噪声放大器.GaN低噪声单片电路采取两级微带线结构,10V偏压下芯片在X波段范围内获得了低于2.2 dB的噪声系数,增益达到18 dB以上,耐受功率达到了27 dBm.在耐受功率测试中发现GaN低噪声HEMT器件...  相似文献   

19.
This paper presents 3-D thermal simulation studies of GaN-on-SiC monolithic microwave integrated circuits (MMICs) containing multifinger micrometer-scale high electron mobility transistors (HEMTs). The heat spreading effect of HEMT source, gate, and drain metallizations on peak structure temperatures is examined. The impacts of a realistic die attach material and rear-of-die heat transfer coefficient on structure temperatures, and in particular on temperature nonuniformity, are examined. Variable gate finger spacing, in which the gate spatial positions are described by polynomials as a function of gate number, is investigated as a means for optimizing the temperature uniformity from gate-to-gate. A thermal simulation code with a parametric MMIC geometry-based mesh generator and a deformable mesh consistent with sequential movement of gate finger positions during optimization is employed for all of the studies. The code is multiscale with a sufficient resolution range to handle a multifinger HEMT structure while also including the MMIC die, die attach metallization, and a realistic heat transfer coefficient associated with microchannel coolers. A variable gate pitch geometry based on an optimized cubic polynomial demonstrates considerable advantage in temperature uniformity.   相似文献   

20.
An ultra-low power InAs/AlSb HEMT Ka-band low-noise amplifier   总被引:2,自引:0,他引:2  
The first antimonide-based compound semiconductor (ABCS) MMIC, a Ka-Band low-noise amplifier using 0.25-/spl mu/m gate length InAs/AlSb metamorphic HEMTs, has been fabricated and characterized on a 75 /spl mu/m GaAs substrate. The compact 1.1 mm/sup 2/ three-stage Ka-band LNA demonstrated an average of 2.1 dB noise-figure between 34-36 GHz with an associated gain of 22 dB. The measured dc power dissipation of the ABCS LNA was an ultra-low 1.5 mW per stage, or 4.5 mW total. This is less than one-tenth the dc power dissipation of a typical equivalent InGaAs/AlGaAs/GaAs HEMT LNA. Operation with degraded gain and noise figure at 1.1 mW total dc power dissipation is also verified. These results demonstrate the outstanding potential of ABCS HEMT technology for mobile and space-based millimeter-wave applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号