首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Hot‐wire chemical vapor deposition (HWCVD) is a promising technique for very fast deposition of high quality thin films. We developed processing conditions for device‐ quality silicon nitride (a‐SiNx:H) anti‐reflection coating (ARC) at high deposition rates of 3 nm/s. The HWCVD SiNx layers were deposited on multicrystalline silicon (mc‐Si) solar cells provided by IMEC and ECN Solar Energy. Reference cells were provided with optimized parallel plate PECVD SiNx and microwave PECVD SiNx respectively. The application of HWCVD SiNx on IMEC mc‐Si solar cells led to effective passivation, evidenced by a Voc of 606 mV and consistent IQE curves. For further optimization, series were made with HW SiNx (with different x) on mc‐Si solar cells from ECN Solar Energy. The best cell efficiencies were obtained for samples with a N/Si ratio of 1·2 and a high mass density of >2·9 g/cm3. The best solar cells reached an efficiency of 15·7%, which is similar to the best reference cell, made from neighboring wafers, with microwave PECVD SiNx. The IQE measurements and high Voc values for these cells with HW SiNx demonstrate good bulk passivation. PC1D simulations confirm the excellent bulk‐ and surface‐passivation for HW SiNx coatings. Interesting is the significantly higher blue response for the cells with HWCVD SiNx when compared to the PECVD SiNx reference cells. This difference in blue response is caused by lower light absorption of the HWCVD layers (compared to microwave CVD; ECN) and better surface passivation (compared to parallel plate PECVD; IMEC). The application of HW SiNx as a passivating antireflection layer on mc‐Si solar cells leads to efficiencies comparable to those with optimized PECVD SiNx coatings, although HWCVD is performed at a much higher deposition rate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
We have presented thin Al2O3 (~4 nm) with SiNx:H capped (~75 nm) films to effectively passivate the boron‐doped p+ emitter surfaces of the n‐type bifacial c‐Si solar cells with BBr3 diffusion emitter and phosphorus ion‐implanted back surface field. The thin Al2O3 capped with SiNx:H structure not only possesses the excellent field effect and chemical passivation, but also establishes a simple cell structure fully compatible with the existing production lines and processes for the low‐cost n‐type bifacial c‐Si solar cell industrialization. We have successfully achieved the large area (238.95 cm2) high efficiency of 20.89% (front) and 18.45% (rear) n‐type bifacial c‐Si solar cells by optimizing the peak sintering temperature and fine finger double printing technology. We have further shown that the conversion efficiency of the n‐type bifacial c‐Si solar cells can be improved to be over 21.3% by taking a reasonable high emitter sheet resistance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
A thin SiOyNx film was inserted below a conventional SiNx antireflection coating used in c‐Si solar cells in order to improve the surface passivation and the solar cell's resistance to potential‐induced degradation (PID). The effect of varying the flow ratio of the N2O and SiH4 precursors and the deposition temperature for the SiOyNx thin film upon material properties were systematically investigated. An excellent surface passivation was obtained on FZ p‐type polished silicon wafers, with the best results obtained with a SiOyNx film deposited at a very low temperature of 130 °C and with an optical refractive index of 1.8. In the SiOyNx/SiNx stack structure, a SiOyNx film with ~6 nm thickness is sufficient to provide excellent surface passivation with an effective surface recombination velocity Seff < 2 cm/s. Furthermore, we applied the optimized SiOyNx/SiNx stack on multicrystalline Si solar cells as a surface passivation and antireflection coating, resulting in a 0.5% absolute average conversion efficiency gain compared with that of reference cells with conventional SiNx coating. Moreover, the cells with the SiOyNx/SiNx stack layers show a significant increase in their resistance to PID. Nearly zero degradation in shunt resistance was obtained after 24 h in a PID test, while a single SiNx‐coated silicon solar cell showed almost 50% degradation after 24 h. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, we report on ion‐implanted, high‐efficiency n‐type silicon solar cells fabricated on large area pseudosquare Czochralski wafers. The sputtering of aluminum (Al) via physical vapor deposition (PVD) in combination with a laser‐patterned dielectric stack was used on the rear side to produce front junction cells with an implanted boron emitter and a phosphorus back surface field. Front and back surface passivation was achieved by thin thermally grown oxide during the implant anneal. Both front and back oxides were capped with SiNx, followed by screen‐printed metal grid formation on the front side. An ultraviolet laser was used to selectively ablate the SiO2/SiNx passivation stack on the back to form the pattern for metal–Si contact. The laser pulse energy had to be optimized to fully open the SiO2/SiNx passivation layers, without inducing appreciable damage or defects on the surface of the n+ back surface field layer. It was also found that a low temperature annealing for less than 3 min after PVD Al provided an excellent charge collecting contact on the back. In order to obtain high fill factor of ~80%, an in situ plasma etching in an inert ambient prior to PVD was found to be essential for etching the native oxide formed in the rear vias during the front contact firing. Finally, through optimization of the size and pitch of the rear point contacts, an efficiency of 20.7% was achieved for the large area n‐type passivated emitter, rear totally diffused cell. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Many solar cells incorporating SiNx films as a rear surface passivation scheme have not reached the same high level of cell performance as solar cells incorporating high‐temperature‐grown silicon dioxide films as a rear surface passivation. In this paper, it is shown by direct comparison of solar cells incorporating the two rear surface passivation schemes, that the performance loss is mainly due to a lower short‐circuit current while the open‐circuit voltage is equally high. With a solar cell test structure that features a separation of the rear metal contacts from the passivating SiNx films, the loss in short‐circuit current can be reduced drastically. Besides a lower short‐ circuit current, dark I–V curves of SiNx rear surface passivated solar cells exhibit distinct shoulders. The results are explained by parasitic shunting of the induced floating junction (FJ) underneath the SiNx films with the rear metal contacts. The floating junction is caused by the high density of fixed positive charges in the SiNx films. Other two‐dimensional effects arising from the injection level dependent SRV of the Si/SiNx interfaces are discussed as well, but, are found to be of minor importance. Pinholes in the SiNx films and optical effects due to a different internal rear surface reflectance can be excluded as a major cause for the performance loss of the SiNx rear surface passivated cells. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Extremely low upper‐limit effective surface recombination velocities (Seff.max) of 5.6 and 7.4 cm/s, respectively, are obtained on ~1.5 Ω cm n‐type and p‐type silicon wafers, using silicon nitride (SiNx) films dynamically deposited in an industrial inline plasma‐enhanced chemical vapour deposition (PECVD) reactor. SiNx films with optimised antireflective properties in air provide an excellent Seff.max of 9.5 cm/s after high‐temperature (>800 °C) industrial firing. Such low Seff.max values were previously only attainable for SiNx films deposited statically in laboratory reactors or after optimised annealing; however, in our case, the SiNx films were dynamically deposited onto large‐area c‐Si wafers using a fully industrial reactor and provide excellent surface passivation results both in the as‐deposited condition and after industrial‐firing, which is a widely used process in the photovoltaic industry. Contactless corona‐voltage measurements reveal that these SiNx films contain a relatively high positive charge of (4–8) × 1012 cm−2 combined with a relatively low interface defect density of ~5 × 1011 eV−1 cm−2. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In this work we study the optimization of laser‐fired contact (LFC) processing parameters, namely laser power and number of pulses, based on the electrical resistance measurement of an aluminum single LFC point. LFC process has been made through four passivation layers that are typically used in c‐Si and mc‐Si solar cell fabrication: thermally grown silicon oxide (SiO2), deposited phosphorus‐doped amorphous silicon carbide (a‐SiCx/H(n)), aluminum oxide (Al2O3) and silicon nitride (SiNx/H) films. Values for the LFC resistance normalized by the laser spot area in the range of 0.65–3 mΩ cm2 have been obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Silicon nitride (a‐SiNx:H) films deposited by the expanding thermal plasma at high rate (> 1 nm/s) have been studied for application as anti‐reflection coatings for multicrystalline silicon (mc‐Si) solar cells. Internal quantum efficiency measurements have revealed that bulk passivation is achieved after a firing‐through process of the a‐SiNx:H as deposited from NH3/SiH4 and N2/SiH4 plasmas. However, the a‐SiNx:H films deposited from N2/SiH4 show a lower passivation quality than those deposited from NH3/SiH4. This has been attributed to a poorer thermal stability of the films deposited from the N2/SiH4 plasma, resulting in structural changes within the film during the firing step. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Bulk and surface passivation by silicon nitride has become an indispensable element in industrial production of multicrystalline silicon (mc‐Si) solar cells. Microwave PECVD is a very effective method for high‐throughput deposition of silicon nitride layers with the required properties for bulk and surface passivation. In this paper an analysis is presented of the relation between deposition parameters of microwave PECVD and material properties of silicon nitride. By tuning the process conditions (substrate temperature, gas flows, working pressure) we have been able to fabricate silicon nitride layers which fulfill almost ideally the four major requirements for mc‐Si solar cells: (1) good anti‐reflection coating (refractive index tunable between 2·0 and 2·3); (2) good surface passivation on p‐type FZ wafers (Seff<30 cm/s); (3) good bulk passivation (improvement of IQE at 1000 nm by 30% after short thermal anneal); (4) long‐term stability (no observable degradation after several years of exposure to sunlight). By implementing this silicon nitride deposition in an inline production process of mc‐Si solar cells we have been able to produce cells with an efficiency of 16·5%. Finally, we established that the continuous deposition process could be maintained for at least 20 h without interruption for maintenance. On this timescale we did not observe any significant changes in layer properties or cell properties. This shows the robustness of microwave PECVD for industrial production. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
We have developed a crystalline silicon solar cell with amorphous silicon (a‐Si:H) rear‐surface passivation based on a simple process. The a‐Si:H layer is deposited at 225°C by plasma‐enhanced chemical vapor deposition. An aluminum grid is evaporated onto the a‐Si:H‐passivated rear. The base contacts are formed by COSIMA (contact formation to a‐Si:H passivated wafers by means of annealing) when subsequently depositing the front silicon nitride layer at 325°C. The a‐Si:H underneath the aluminum fingers dissolves completely within the aluminum and an ohmic contact to the base is formed. This contacting scheme results in a very low contact resistance of 3.5 ±0.2 mΩ cm2 on low‐resistivity (0.5 Ω cm) p‐type silicon, which is below that obtained for conventional Al/Si contacts. We achieve an independently confirmed energy conversion efficiency of 20.1% under one‐sun standard testing conditions for a 4 cm2 large cell. Measurements of the internal quantum efficiency show an improved rear surface passivation compared with reference cells with a silicon nitride rear passivation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Spectral response of solar cells determines the output performance of the devices. In this work, a 20.0% efficient silicon (Si) nano/microstructures (N/M‐Strus) based solar cell with a standard solar wafer size of 156 × 156 mm2 (pseudo‐square) has been successfully fabricated, by employing the simultaneous stack SiO2/SiNx passivation for the front N/M‐Strus based n+‐emitter and the rear surface. The key to success lies in the excellent broadband spectral responses combining the improved short‐wavelength response of the stack SiO2/SiNx passivated Si N/M‐Strus based n+‐emitter with the extraordinary long‐wavelength response of the stack SiO2/SiNx passivated rear reflector. Benefiting from the broadband spectral response, the highest open‐circuit voltage (Voc) and short‐circuit current density (Jsc) reach up to 0.653 V and 39.0 mA cm?2, respectively. This high‐performance screen‐printed Si N/M‐Strus based solar cell has shown a very promising way to the commercial mass production of the Si based high‐efficient solar cells.  相似文献   

12.
A stack of hydrogenated amorphous silicon (a‐Si) and PECVD‐silicon oxide (SiOx) has been used as surface passivation layer for silicon wafer surfaces. Very good surface passivation could be reached leading to a surface recombination velocity (SRV) below 10 cm/s on 1 Ω cm p‐type Si wafers. By using the passivation layer system at a solar cell's rear side and applying the laser‐fired contacts (LFC) process, pointwise local rear contacts have been formed and an energy conversion efficiency of 21·7% has been obtained on p‐type FZ substrates (0·5 Ω cm). Simulations show that the effective rear SRV is in the range of 180 cm/s for the combination of metallised and passivated areas, 120 ± 30 cm/s were calculated for the passivated areas. Rear reflectivity is comparable to thermally grown silicon dioxide (SiO2). a‐Si rear passivation appears more stable under different bias light intensities compared to thermally grown SiO2. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
This article reports on the integration of facile native oxide‐based passivation of crystalline silicon surfaces within the back amorphous‐crystalline silicon heterojunction solar cell concept. The new passivation scheme consists of 1‐nm thick native oxide and nominally 70‐nm thick PECVD silicon nitride. The low temperature passivation scheme provides uniform high quality surface passivation and low parasitic optical absorption. The interdigitated doped hydrogenated amorphous silicon layers were deposited on the rear side of the silicon wafer using the direct current saddle field PECVD technique. A systematic analysis of a series of back amorphous‐crystalline silicon heterojunction cells is carried out in order to examine the influence of the various cell parameters (interdigital gap, n‐doped region width, ratio of widths of p, and n‐doped regions) on cell performance. A photovoltaic conversion efficiency of 16.7 % is obtained for an untextured cell illuminated under AM 1.5 global spectrum (cell parameters: VOC of 641 mV, JSC of 33.7 mA‐cm − 2 and fill factor of 77.3 %). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This paper compares the optical, electronic, physical and chemical properties of dielectric thin films that are commonly used to enhance the performance of bulk silicon photovoltaic devices. The standard buried‐contact (BC) solar cell presents a particularly challenging set of criteria, requiring the dielectric film to act as: (i) an anti‐reflection (AR) coating; (ii) a film compatible with surface passivation; (iii) a mask for an electroless metal plating step; (iv) a diffusion barrier for achieving a selective emitter; (v) a film with excellent chemical resistance; (vi) a stable layer during high‐temperature processing. The dielectric coatings reviewed here include thermally grown silicon dioxide (SiO2), silicon nitride deposited by plasma‐enhanced chemical vapour deposition (a‐ SiNx :H) and low‐pressure chemical vapour deposition (Si3N4), silicon oxynitride (SiON), cerium dioxide (CeO2), zinc sulphide (ZnS), and titanium dioxide (TiO2). While TiO2 dielectric coatings exhibit the best optical performance and a simple post‐deposition surface passivation sequence has been developed, they require an additional sacrificial diffusion barrier to survive the heavy groove diffusion step. A‐ SiNx :H affords passivation through its high fixed positive charge density and large hydrogen concentration; however, it is difficult to retain these electronic benefits during lengthy high‐temperature processing. Therefore, for the BC solar cell, Si3N4 films would appear to be the best choice of dielectric films common in industrial use. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
We explore the potential of laser processing aluminium oxide (Al2O3)/amorphous silicon carbide (a‐SiCx:H) stacks to be used at the rear surface of p‐type crystalline silicon (c‐Si) solar cells. For this stack, excellent quality surface passivation is measured with effective surface recombination velocities as low as 2 cm/s. By means of an infrared laser, the dielectric film is locally opened. Simultaneously, part of the aluminium in the Al2O3 film is introduced into the c‐Si, creating p+ regions that allow ohmic contacts with low‐surface recombination velocities. At optimum pitch, high‐efficiency solar cells are achievable for substrates of 0.5–2.5 Ω cm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
High‐quality surface and bulk passivation of crystalline silicon solar cells has been obtained under optimum anti‐reflection coating properties by silicon nitride (a‐SiNx:H) deposited at very high deposition rates of ∼5 nm/s. These a‐SiNx:H films were deposited using the expanding thermal plasma (ETP) technology under regular processing conditions in an inline industrial‐type reactor with a nominal throughput of 960 solar cells/hour. The low surface recombination velocities (50–70 cm/s) were obtained on p‐type silicon substrates (8·4 Ω cm resistivity) for as‐deposited and annealed films within the broad refractive index range of 1·9–2·4, which covers the optimum bulk passivation and anti‐reflection coating performance reached at a refractive index of ∼2·1. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we evaluate p‐type passivated emitter and rear locally diffused (p‐PERL) and n‐type passivated emitter and rear totally diffused (n‐PERT) large area silicon solar cells featuring nickel/copper/silver (Ni/Cu/Ag) plated front side contacts. By using front emitter p‐PERL and rear emitter n‐PERT, both cell structures can be produced with only a few adaptations in the entire process sequence because both feature the same front side design: homogeneous n+ diffused region with low surface concentration, SiO2/SiNx:H passivation, Ni/Cu/Ag plated contacts. Energy conversion efficiencies up to 20.5% (externally confirmed at FhG‐ISE Callab) are presented for both cell structures on large area cells together with power‐loss analysis and potential efficiency improvements based on PC1D simulations. We demonstrate that the use of a rear emitter n‐PERT cell design with Ni/Cu/Ag plated front side contacts enables to reach open‐circuit voltage values up to 676 mV on 1–2 Ω cm n‐type CZ Si. We show that rear emitter n‐PERT cells present the potential for energy conversion efficiencies above 21.5% together with a strong tolerance to wafer thickness and bulk resistivity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Hydrogenated and phosphorus‐doped amorphous silicon carbonitride films (a‐SiCxNy:H(n)) were deposited by plasma‐enhanced chemical vapor deposition (PECVD) on crystalline silicon surface in order to explore surface passivation properties. Very silicon‐rich films yielded effective surface recombination velocities at 1 sun‐illumination as low as 3 cm s−1 and 2 cm s−1 on 1 Ω cm p‐ and n‐type crystalline silicon substrates, respectively. In order to use them as anti‐reflection coating, we increased alternatively either the carbon or nitrogen content of these films. Also, a combination of passivation and antireflective films was analyzed. Finally, we explored the passivation stability under high‐temperature steps. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Atomic‐layer‐deposited aluminium oxide (Al2O3) is applied as rear‐surface‐passivating dielectric layer to passivated emitter and rear cell (PERC)‐type crystalline silicon (c‐Si) solar cells. The excellent passivation of low‐resistivity p‐type silicon by the negative‐charge‐dielectric Al2O3 is confirmed on the device level by an independently confirmed energy conversion efficiency of 20·6%. The best results are obtained for a stack consisting of a 30 nm Al2O3 film covered by a 200 nm plasma‐enhanced‐chemical‐vapour‐deposited silicon oxide (SiOx) layer, resulting in a rear surface recombination velocity (SRV) of 70 cm/s. Comparable results are obtained for a 130 nm single‐layer of Al2O3, resulting in a rear SRV of 90 cm/s. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Atomic layer deposition (ALD) of thin Al2O3 (≤10 nm) films is used to improve the rear surface passivation of large‐area screen‐printed p‐type Si passivated emitter and rear cells (PERC). A blister‐free stack of Al2O3/SiOx/SiNx is developed, leading to an improved back reflection and a rear recombination current (J0,rear) of 92 ± 6 fA/cm2. The Al2O3/SiOx/SiNx stack is blister‐free if a 700°C anneal in N2 is performed after the Al2O3 deposition and prior to the SiOx/SiNx capping. A clear relationship between blistering density and lower open‐circuit voltage (VOC) due to increased rear contacting area is shown. In case of the blister‐free Al2O3/SiOx/SiNx rear surface passivation stack, an average cell efficiency of 19.0% is reached and independently confirmed by FhG‐ISE CalLab. Compared with SiOx/SiNx‐passivated PERC, there is an obvious gain in VOC and short‐circuit current (JSC) of 5 mV and 0.2 mA/cm2, respectively, thanks to improved rear surface passivation and rear internal reflection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号