首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
提出将时域物理光学法(TDPO)应用于计算电大均匀介质目标的时域散射场。将菲涅尔反射系数应用到频域物理光学近似中,由逆傅里叶变换推导出介质TDPO的表达式,从而使TDPO能够分析电大均匀介质目标的瞬态响应。同时给出了三角面片建模下入射波的遮挡消隐方法。计算了典型目标的瞬态散射响应和宽带雷达散射截面(RCS),与其他方法求得的结果吻合良好,验证了介质TDPO的正确性。  相似文献   

2.
关莹  龚书喜  张帅  路宝  洪涛 《电子与信息学报》2010,32(11):2730-2734
该文采用物理光学方法(PO),快速计算了非均匀有理B样条 (NURBS) 曲面建模的电大目标的时域瞬态散射和宽带雷达截面(RCS)。通过对频域物理光学散射场表达式进行逆傅里叶变换推导出卷积形式的瞬态散射表达式;对频域物理光学积分进行逆傅里叶变换得到时域物理光学积分的表达式。为了避免数值积分的使用,将NURBS曲面等参数离散为一组三角面片,运用Radon变换得到了时域和频域物理光学积分的精确闭式表达式。遮挡消隐时使用改进的z-buffer方法进行了加速。对时域瞬态散射场快速傅里叶变换得到目标的宽带RCS。文中计算了高斯脉冲平面波入射下模型的瞬态散射响应和宽带RCS,数值结果表明该文方法具有很高的计算精度,且计算速度快于传统时域物理光学法(TDPO)。  相似文献   

3.
本文讨论目标RCS分析计算中多次散射的计算方法,计算多次散射时主要考虑面元.面元之间的相互作用,计算过程采用几何光学法(GO)、物理光学法(PO)。同时给出计算例子,考虑多次散射时总的后向RCS与前人发表的实验结果相吻合。  相似文献   

4.
姬伟杰  刘平  关晓东  王炯 《现代导航》2013,4(5):362-370
基于几何光学法(GO)、物理光学法(PO)、射线弹跳法(SBR)和等效电流法(MEC),提出了一种快速计算金属海面上电大尺寸目标电磁散射的解析算法。该算法考虑了阴影效应,运用GO/PO+SBR计算了目标与海面的镜面反射以及它们之间的多次相互作用,并运用MEC计算了目标的棱边绕射以改进计算结果。应用该算法计算了平板上方规则金属目标的双站雷达散射截面(RCS),并与传统矩量法(MoM)进行比较,验证了算法的有效性。最后,计算了PM(Pierson-Moskowitz)海浪谱的随机海洋粗糙面上舰船模型目标的散射特性,并对计算结果进行了分析,讨论了海洋面以及入射波参数对散射结果的影响。  相似文献   

5.
徐云学  龚书喜 《电波科学学报》2007,22(2):266-270,291
在分析物理光学法(PO)、等效电磁流法(MEC)、几何光学物理光学法(GOPO)等算法的基础上开发了基于MATLAB的电大尺寸目标RCS计算软件系统.应用MATLAB外部接口与FORTRAN语言混合编程提高了计算效率.最后利用该软件系统计算了典型目标和某大型舰艇的RCS,典型目标的RCS计算结果与测量值比较,吻合良好.某大型舰艇目标的RCS计算结果经分析,计算结果合理.  相似文献   

6.
顾俊戴飞 《微波学报》2010,26(Z2):40-43
从Stratton-Chu 积分方程入手,推导出一种光滑凸体金属表面涂覆雷达吸波材料(RAM)的物理光学后向RCS计算公式,同时考虑边缘绕射的贡献,介质劈与金属劈的电磁散射特性是不同的,须通过等效电磁流法(EEC)来求解介质边缘散射加以修正。通过对涂覆平板、涂覆柱锥组合体及某导弹目标RCS 的计算,再与实测值和矩量法结果对比,它们均相吻合,从而验证了算法的有效性和准确性。本算法特别适合大尺寸目标RCS 计算。  相似文献   

7.
旋转螺旋桨叶片调制效应分析   总被引:4,自引:0,他引:4  
曹祥玉  梁昌洪  宗卫华 《电子学报》2002,30(9):1390-1392
本文根据准静态法的特点,利用物理光学法、物理绕射理论和等效电磁流法,分析了飞机旋转螺旋桨叶片的散射特性。计算了雷达接收螺旋桨散射回波信号的时域及频域响应,并分析了它的调制效应,此结果可用于雷达目标信号识别。  相似文献   

8.
舰船与海面构成复合目标,其雷达散射截面(RCS)的研究一直是电磁计算领域中的重点和难点。文中建立了Weierstrass分形海面和目标三角面元的几何模型以及基于物理光学法(PO)和弹跳射线法(SBR)的海面目标的电磁散射模型。采用OpenGL图形编程技术与C++多线程处理技术设计了一款可视化目标电磁散射预估系统(ESEE)V1.0,对比典型目标体RCS 与商业软件FEKO 的计算结果,验证了ESEE的可靠性。通过计算不同海况的海面RCS 及超电大尺寸舰船与海面复合散射RCS,分析了海面散射以及超电大目标与海面复合散射特性。  相似文献   

9.
采用时城有限差分方法研究了涂覆各向异性材料金属目标的宽带散射特性,得到了涂覆不同厚度的正单轴和负单轴各向异性材料情况下的频率响应和双站RCS,通过对这些散射数据的分析得出了一些关于涂覆材料及涂覆厚度对目标散射特性影响的结论,这些结论有助于对各向异性隐身材料的研究,体现了时域计算对于分析目标宽频带散射特性的优点.  相似文献   

10.
一种飞翼布局无人机的RCS研究   总被引:1,自引:0,他引:1  
对一种飞翼布局无人机(UAV)模型的雷达散射截面(RCS)进行了理论仿真估算和微波暗室测量.在仿真估算中采用了一种物理光学法(P0)+等效电磁流(MEC)法的混合高频计算方法,分别针对目标表面散射和目标边缘散射场进行计算.得出的理论结果与真实测量结果基本相符,证明在解决电大尺寸模型的RCS估算时以这种方法计算具有较高的可信度,能够满足仿真要求.  相似文献   

11.
目标的短脉冲散射问题本质上是其宽带散射特性,从时域上获取短脉冲散射问题更为直接。时域物理光学方法具有计算速度快、物理近似意义清晰明确等特点,可直接计算电大尺寸目标的微波短脉冲散射的时域波形。介绍了时域物理光学的理论公式,通过三角型网格剖分建立目标模型,引入Radon 变换计算目标的“冲击响应”,利用卷积计算获得目标的微波短脉冲散射时域波形。通过仿真算例进行验证,计算双导体球模型散射回波验证了该方法的可行性;计算大飞机的微波短脉冲散射波形展示了该方法处理电大尺寸问题的能力。用该方法计算的目标短脉冲散射回波波形可直接作为信号处理研究的输入。  相似文献   

12.
基于时域物理光学(Time-domain Physical Optics, TDPO)方法, 给出了三角面元剖分下散射场解析计算的求解思路.对三角面元进行二重积分求得散射场计算的最终表达式.与传统的TDPO方法相比, 在同等计算模型下, 解析方法具有更高的计算精度.在处理高频复杂问题时, 解析方法可以用更少的面元数量参与计算, 从而节省大量的计算时间与计算机内存.  相似文献   

13.
赵华  郭立新 《雷达学报》2018,7(1):91-96
该文采用物理光学法方法研究了具有分形粗糙表面的涂覆目标太赫兹散射特性。基于分形粗糙面建立表面粗糙目标模型,根据菲涅尔反射系数得出表面电流分布进而得到涂覆粗糙目标的雷达散射截面。对比分析了具有粗糙表面和光滑目标的散射结果,详细讨论了不同频率、不同涂层厚度的表面粗糙钝锥目标模型的太赫兹散射特性,计算结果表明在太赫兹波段目标表面的粗糙度对散射有显著的影响。   相似文献   

14.
申宁  魏兵 《电波科学学报》2017,32(6):712-717
在传统的时域弹跳射线(Time Domain Shooting and Bouncing Rays,TDSBR)方法的基础上,采用基于解析积分的时域物理光学(Time Domain Physical Optics,TDPO)方法计算目标的散射场.与传统弹跳射线法相比,新方法明显减少了射线管的数量,节省了计算内存,是一种分析电大尺寸目标散射问题的高效方法.最后,通过数值计算结果验证了该方法的可靠性和高效性.  相似文献   

15.
为了满足基于模板的逆合成孔径雷达(ISAR)目标识别对海量高分辨模板图像的工程需求,提出了一种基于并行电磁散射特性计算技术的ISAR图像信号级仿真方法。首先,以OpenMP技术为基础采用并行物理光学和等效边缘电磁流对目标的电磁散射特性进行快速计算;其次,以步进频率波形为雷达发射波形结合目标的电磁散射特性生成了宽带雷达回波数据;最后,对使用距离多普勒算法对仿真回波数据进行处理生成ISAR像,并与点阵模型成像结果进行了对比分析。实现了对ISAR图像的信号级快速仿真,对ISAR系统设计与验证、ISAR图像解译和目标识别以及ISAR成像处理等具有重要意义。  相似文献   

16.
目标雷达散射截面积(Radar Cross Section, RCS)计算在隐身设计、电子对抗、目标探测、识别和成像等方面具有重要的研究价值,是目标电磁散射特性的重点研究方向。针对复杂目标RCS估计问题,基于属性散射中心模型的单一方法在估计大角度范围的目标RCS时会产生较大误差,而物理光学方法需要在每个观察角度对目标表面的面元进行遮挡判别才能准确得到目标RCS,计算量大。因此,本文提出一种联合属性散射中心模型和物理光学的处理方法,在部分观察角度通过物理光学方法分析确定目标的属性参数集,再通过属性散射中心模型分析快速估计任意观察角度、不同频率下的目标RCS,获得在大角度范围的结果更加准确、计算量更小。最后采用FEKO软件仿真验证了所提方法的有效性。  相似文献   

17.
提出了一种计算复杂涂敷目标散射场的一般方法。将带有尾翼的弹体目标分成几个散射中心 ,在每个散射中心上 ,运用物理光学积分和几何绕射理论对其RCS进行分析和计算 ,并将计算结果与无涂敷金属表面目标的RCS进行对比分析 ,结果与预期估计情况吻合较好 ,表明该方法不仅计算简单 ,而且结果也较为精确  相似文献   

18.
飞航导弹雷达截面预估   总被引:1,自引:0,他引:1  
综合应用物理光学法(PO)、等效电磁流法(MEC)和几何光学法(GO)等高频分析方法,分析了导弹目标各部分散射场之间的相互干涉作用,计算了椭球体弹头、橄榄体弹头和半球体弹头三种不同形状弹头的导弹整体雷达截面(RCS)。计算结果表明该方法正确有效,可满足工程分析的需要。  相似文献   

19.
An innovative approach to computing the high-frequency radar cross sections (RCSs) of complex radar targets in real time, using a 3-D graphics workstation, is presented. The target (typically, an aircraft) is modeled with the I-IDEAS solid-modeling software, using a parametric-surface approach. The high-frequency RCS is obtained through physical optics (PO), the method of equivalent currents (MEC), the physical theory of diffraction (PTD), and the impedance boundary condition (IBC) techniques. The CPU time for the RCS prediction is spent only on the electromagnetic part of the computation, while the more time-consuming geometric-model manipulations are left to the graphics hardware  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号