首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
温度对微机电系统(MEMS)陀螺零偏影响较大,是影响其测量精度的主要因素之一。该文通过温度循环试验,建立了陀螺零偏与温度间的关系。采用多元逐步回归法和温度分段插值法建立了陀螺零偏温度补偿模型。试验结果证明,两种方法均能准确地反映陀螺零偏随温度变化的情况,且温度分段插值法可以消除明显的趋势项。与多元逐步回归法相比,补偿后全温零偏误差的峰峰值由0.025 (°)/s减小到0.015 (°)/s,全温零偏稳定性由32.9 (°)/h提高到14.2 (°)/h。  相似文献   

2.
半球谐振陀螺温度特性及补偿分析   总被引:1,自引:0,他引:1       下载免费PDF全文
半球谐振陀螺仪(HRG)是一种高精度、高可靠、长寿命的新型固体振动陀螺仪。温度变化会影响半球谐振陀螺的漂移、零偏等性能指标。为减小这种影响,该文通过研究分析半球谐振陀螺的温度特性,设计了温度补偿电路。采用温度补偿电路后,半球陀螺漂移精度从0.05 (°)/h提高到0.03 (°)/h。  相似文献   

3.
基于开关扩展卡尔曼滤波的姿态估计   总被引:1,自引:0,他引:1  
姚若晨 《电讯技术》2012,52(5):674-679
针对低成本动中通系统中的姿态估计问题,提出一种开关扩展卡尔曼滤波算法。以 无航向角的姿态更新算法为基础,根据微机械陀螺和加速度计分别建立系统状态方程和测量 方程。针对机动加速度的影响,设计了三维开关扩展卡尔曼滤波方程,对载体姿态角和陀螺 零偏进行实时估计。实验结果表明,该算法能够准确估计载体姿态和陀螺零偏,姿态角估计 误差小于0.5°,俯仰角和横滚角估计误差的方差分别为0.130 1°和0.140 5°, 两轴陀螺零偏误差均值均小于(2×10-4) °/s,能够满足动中通的应用要求。  相似文献   

4.
在干涉式光纤陀螺组成的捷联惯性导航系统中,光纤陀螺启动过程中温变效应导致的漂移项是导航误差的主要误差源,已成为限制高精度光纤陀螺系统性能进一步提升的关键因素。通过对光纤陀螺启动过程中温变效应的理论分析与建模,提出了一种基于查表补偿的光纤陀螺启动温变效应误差抑制法和误差评价法。实验结果表明,该抑制方法可使-40~+60 ℃环境下光纤陀螺漂移概率误差从0.02~0.50 (°)/h降至0.01 (°)/h以下,对应导航系统的导航圆概率误差从1.4~35 n mile/h降至0.8 n mile/h以下,有效抑制了光纤陀螺启动温变效应误差,提升了系统性能。  相似文献   

5.
温度漂移是影响光纤陀螺精度的重要因素之一。在对光纤陀螺温度漂移特性进行实验分析的基础上,对零偏温度漂移进行了多项式拟合补偿。为了解决传统曲面拟合方法无法精确描述标度因数温度漂移与温度、转速之间的关系导致其补偿精度低的问题,提出了一种基于自适应网络模糊推理的光纤陀螺温度漂移补偿新方法。该方法基于模糊逻辑,结合最小二乘和误差反向传播混合算法,设计了自适应网络模糊推理系统,从而有效提高了光纤陀螺温度漂移补偿精度。实验结果表明,在-30~60 ℃温度范围和-165~165 ()/s 载体角速率范围,应用新方法对光纤陀螺温度漂移进行补偿,得到的训练误差均方根不超过0.003 ()/s,预测误差均方根不超过0.005 ()/s。  相似文献   

6.
温度是影响激光陀螺精度的主要因素之一,对温度引起的机抖激光陀螺漂移进行精确建模,对提高激光陀螺捷联惯导系统的精度具有十分重要的意义。介绍了机抖激光陀螺的温度特性,建立了基于改进人工鱼群算法(Improved Artificial Fish Swarm Algorithm,IAFSA)的机抖激光陀螺温度补偿模型,给出了IAFSA 建模的详细步骤和方法, 对传统的逐步回归方法和IAFSA 进行了比较。结果表明:IAFSA可以对温度引起的激光陀螺漂移进行精确建模,补偿后的激光陀螺零偏不稳定性达到0.001 85()/h,比传统的逐步回归方法建模精度提高了15.5%,得到的温度补偿模型可以对陀螺的零偏进行实时补偿,设计了两种典型的温度试验,获得了满意的补偿效果。  相似文献   

7.
为了提高捷联惯导导航精度,构建一种Kalman滤波模型来估计陀螺常值漂移和加速度计零偏。首先分析了载体作单轴正、反旋转运动时,捷联惯导的系统误差特性,然后以正、反旋转两过程中的姿态误差和速度误差为状态变量,以两过程中同一位置处的姿态误差差值和速度误差和值为观测变量,构建了一种Kalman滤波模型,来估计惯性器件常值误差;经可观测性分析,该模型是可观测的。仿真实验中,对于3个陀螺漂移均为0.1(°)/h、加速度计零偏均为9.78×10~(-3 )m/s~2的捷联惯导,陀螺漂移估计精度达到0.01(°)/h,水平方向加速计零偏估计误差均小于0.4×10~(-3 )m/s~2,实验证明该方案可行。  相似文献   

8.
数字闭环光纤陀螺温度误差分析   总被引:1,自引:0,他引:1  
分析了数字闭环光纤陀螺温度误差的来源,指出温度误差主要包括温度噪声、标度因数漂移、偏置漂移.提出一种基于离散小波变换的分离陀螺温度噪声和温度漂移的方法,利用该方法对测试数据进行了分析,证实了在零偏稳定性大于0.3(°)/h的光纤陀螺中,温度漂移是主要温度误差.将简化的光纤陀螺等效相位模型与温度敏感参数模型结合得到光纤陀螺温度漂移误差分布模型,利用该模型分析了影响温度漂移误差的各因素,并对主要因素进行了测试和分析.最后总结了抑制温度漂移误差的几点措施.  相似文献   

9.
石英微机电陀螺是一种哥氏(Coriolis)振动陀螺,其敏感芯片采用音叉式结构,工作时音叉处于谐振状态。敏感芯片具有多阶模态,前9阶模态覆盖频率为3~21 kHz。敏感芯片的部分模态易受外部振动影响而导致敏感芯片产生共振,使陀螺产生零位偏移误差,陀螺的零位偏移误差可达0.5 (°)/s。该文分析了敏感芯片模态共振误差机理,提出通过结构错频设计避免外部环境特定频率对敏感芯片的影响,从而抑制了零位偏移误差,零位偏移误差减小到约0.03 (°)/s,提高了陀螺的振动环境适应性。  相似文献   

10.
董春梅  任顺清  陈希军  王常虹 《红外与激光工程》2018,47(9):917007-0917007(9)
为了减小转台误差对激光陀螺捷联惯组(SIMU)标定精度的影响,采用模观测法设计了正二十面体-12点的位置和速率试验计划。首先,利用在重力场下的12个静态位置标定加速度计的零偏、标度因子和安装误差矩阵;然后,采用外环角速率、中内环双轴翻滚至12点位置来标定陀螺的零偏、标度因子和安装误差矩阵;最后,利用SIMU框架坐标系为桥梁,实现了加速度计和陀螺参数坐标系的统一。仿真分析表明:该方法能有效抑制转台误差对SIMU标定结果的影响,当转台各轴系垂直度误差为角秒级且角位置误差小于1'时,加速度计和陀螺的标度因子相对误差和安装误差矩阵的标定误差均小于10-5,加速度计零偏的标定误差小于10g ,陀螺零偏的标定误差小于0.01()/h与测量噪声处于同一数量级。  相似文献   

11.
石文峰  王省书  郑佳兴  战德军  王以忠 《红外与激光工程》2016,45(11):1106004-1106004(8)
捷联惯导系统的精度受到自身各种误差因素的影响,需在使用之前进行精确地标定和补偿。为了更加有效地标定误差,设计了一种10位置系统级标定的方法。利用简化的误差模型和速度误差变化率方程,建立了所有误差参数与导航误差之间的线性关系。通过设计的10位置连续旋转方案对由各项误差参数引起的速度误差进行充分激励,利用所得数据进行卡尔曼滤波,计算出包括陀螺仪和加速度计的零偏、标度因数误差、安装误差以及加速度计二次项误差等24个误差参数。仿真得到陀螺零偏误差优于0.000 75()/h,加速度计零偏误差优于g,陀螺和加速度计的安装角误差优于1.5,标度因数误差优于2 ppm(1 ppm=10-6)系统,加速度计二次项误差优于0.1510-6 s2/m。另通过3组实验验证了重复性,证明了该方法确实有效。  相似文献   

12.
谐振式光学陀螺系统需要使用激光器跟踪锁定谐振频率进行角速度检测,但其所用的半导体激光器存在光功率波动问题,受到相位调制器残余强度调制的影响,会使系统的解调曲线中心点发生偏移,导致陀螺系统出现锁定偏差,输出路形成长期漂移,该文对此进行了仿真分析与实验测试,并通过标定光功率与解调曲线中心点的方式得到两者线性关系,实时检测光功率补偿陀螺系统锁频点,消除光功率波动引起的陀螺输出误差,在本方案下陀螺系统的零偏稳定性测试为80 (°)/h,且输出路无漂移现象,能够提升陀螺系统的长期工作稳定性。  相似文献   

13.
光路温度特性对激光陀螺零偏的影响   总被引:1,自引:0,他引:1  
偏置漂移使得激光陀螺输出信号产生较大偏置误差,准确地辨识漂移并有效地对其进行补偿,直接关系到激光陀螺的测量精度.为了提高激光陀螺的精度,研究了光路温度特性对激光陀螺零偏的影响.通过大量的重复性高低温实验,利用最小二乘法证明了光强与温度的线性关系,得到了拟合直线表达式,并分析了利用光强对陀螺零偏的补偿效果.提出了从硬件设...  相似文献   

14.
结构谐振对闭环光纤陀螺振动性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
振动性能是体现光纤陀螺环境适应性的一项重要指标。结构谐振是引起光纤陀螺振动误差的主要因素之一。在描述了光纤传感环圈骨架谐振对陀螺振动性能影响的试验现象的基础上,通过环圈骨架的有限元分析,以及光纤陀螺振动误差模型的推导,得出了环圈骨架谐振频率与陀螺振动输出零位漂移最大点的频率相吻合的结论。针对环圈骨架的薄弱环节进行改进设计及实验验证,结果表明消除结构谐振后的陀螺在0~2000Hz之间振动,输出不再发生明显漂移,振动过程中陀螺的零偏变化不超过0.2(o)/h。  相似文献   

15.
本文概略地介绍了一种雷达稳定伺服系统用的压电陀螺电路的设计及其应用。这种陀螺的灵敏限为0.01°/s,梯度约为340mV/°/s,零位漂移为0.2°/s/h,阻尼比为0.7,固有频率大于80Hz,寿命大于40,000小时。雷达由于采用了这种陀螺,使该系统对外界扰动的抑制能力提高了40d8,伺服系统的稳定精度达到0.5密位。  相似文献   

16.
针对微机械陀螺在启动过程中与达到热平衡后的温度特性不一致的特点开展温度梯度建模研究工作.实验表明陀螺在启动过程中由于内部温升引起的相对环境温度的梯度变化成为了影响陀螺精度的主要因素.为了抑制陀螺的初始热漂移,分析了不同的开机起始温度点下陀螺补偿模型参数与温度的关系,提出了一种基于起始工作温度点计算模型参数的算法,并进行了补偿.结果表明陀螺零偏随温度基本保持不变,零偏稳定性由补偿前的76.942℃/h改善为8.687℃/h,性能提高了一个数量级.  相似文献   

17.
基于Sagnac效应的谐振式光波导陀螺具有理论精度高及易集成化等特点是导航及制导系统中重要的发展方向。由于波导腔的小型化发展趋势,现阶段光波导腔自由谱宽通常达到GHz以上,并且谐振腔的谐振频率会随温度变化而漂移,因此对激光器调谐范围提出较高的要求。当激光器调谐范围小于谐振腔的自由谱宽时,谐振频率漂移出激光器的调谐范围而导致陀螺失锁;而增大调谐系数时,会造成激光器控制精度的下降,这在陀螺应用中是互相矛盾的。本文提出了一种应用于集成化光波导陀螺样机的半导体激光器双重锁频的方法,解决了光波导谐振腔的失锁问题,并且在保证温度变化不失锁的前提下通过提升激光器控制精度,将锁频精度从7.22°/h提高到2.86°/h,完成了尺寸为Φ18cm×20cm的谐振式光波导陀螺的集成化,其1h长期零偏稳定性为0.0073°/s。  相似文献   

18.
光纤陀螺对温度比较敏感,由于温度引起的零偏漂移是光纤陀螺工作尤其是启动过程中的一种较大误差。文中为了减小光纤陀螺启动过程的零偏漂移、缩短启动时间,提出了对光纤陀螺启动过程进行补偿的方案。该方案以光纤陀螺温度和温度变化率为输入、光纤陀螺漂移为输出建立二输入单输出的RBF神经网络,用于陀螺启动过程补偿。在室温下对某型号光纤陀螺启动漂移进行了补偿,试验结果表明该方法能有效减小陀螺的启动温度漂移,缩短陀螺启动时间。将该方案运用到某型号的光纤陀螺寻北仪上,常温试验表明,该方案大大缩短了寻北仪的准备时间,提高了寻北精度。  相似文献   

19.
报道了采用反射型谐振腔结构的无源谐振腔激光陀螺系统。在实验室环境下,取得了漂移稳定性1.7deg/h的性能。指出了引起陀螺漂移的误差因素,并提出进一步改善陀螺测量精度的措施。  相似文献   

20.
杨建强  杨林  刘斌 《激光与红外》2018,48(5):615-619
针对陆用武器对高精度寻北定向的要求,本文以高精度光纤陀螺寻北仪为研究对象,基于光纤陀螺寻北仪误差模型和光纤陀螺的误差特性,从理论上对光纤陀螺寻北仪寻北误差进行了分析,提出寻北仪主要包括系统误差和器件误差两个方面的误差源,并分别对不同误差源引起的寻北误差进行推导,得到光纤陀螺寻北仪寻北精度主要受陀螺零偏漂移、安装误差和转台测角精度决定的结论。对光纤陀螺寻北仪各误差源引起的寻北误差进行仿真试验,试验证明了理论分析的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号