首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 130 毫秒
1.
孙子林  李科 《激光与红外》2023,53(12):1866-1870
为解决高温辐射源和环境温度对红外测温的影响,提高极端工况下红外热像仪的测温精度,以红外辐射理论以及红外热像仪测温原理为基础,提出了一种将红外图像灰度与目标温度、环境温度和积分时间相结合的综合辐射温度反演方法,该方法实现了环境(镜头)温度与场景温度参量解耦,可以独立预估各参量变化所产生的探测器响应变化。首先对红外热像仪进行数据标定,标定时一般采用高精度面源黑体,之后通过计算面源黑体辐射亮度,利用黑体辐亮度和黑体灰度的线性关系,对黑体温度与黑体图像灰度值两组数据之间关系进行拟合,建立全环境温度和全积分时间的大范围温度反演匹配模型。最后在实验室环境下,分别用热像仪和基于灰度的温度反演模型对探测目标进行测温。经过实验验证,该反演模型在实验室环境下取得了较为良好的效果。  相似文献   

2.
谭锋  傅强 《红外》2011,32(6):23-27
传统的红外热像仪测温算法具有测温精度低,测得的温度值不是目标物体的真实温度等缺点.从红外热像仪的测温原理入手,重点介绍了产生上述缺点的原因,并分析了黑体标定测温算法的不足之处.在此基础上提出了一种红外热像仪精确测温算法.通过在传统的黑体标定测温算法中引入差值查表标定、测温预处理和真实温度换算等环节,提高了热像仪的测温精...  相似文献   

3.
王小力  黄潇 《激光与红外》2019,49(5):565-570
非制冷红外热像仪随着环境温度、电源波动以及吸收红外辐射的增加,将会产生严重的温度漂移现象,这将影响到红外探测器的响应特性,从而导致输出信号受一定的影响。本文针对应用在测温检测方面的非制冷红外热像仪开展研究,提出了一种红外热像仪稳定性验证试验方法,并通过此方法对国内外多款非制冷红外热像仪进行了稳定性测试,绘制其输出信号随时间变化的曲线。根据稳定性情况确定针对热像仪温度漂移的温度补偿算法,提升应用产品的测温精度。  相似文献   

4.
红外探测器的漂移特性对测温精度的影响   总被引:1,自引:0,他引:1  
介绍了基于黑体标定的目标表面温度测量系统的系统组成及测量原理,利用黑体对红外探测器标定得到表面温度的测量曲线.分析了红外探测器的漂移特性,拟合漂移曲线并对探测器的能量漂移进行补偿.对一个温度可控的面辐射源进行测温实验,比较漂移补偿前后的测温数据,补偿后的测温精度得到了明显的提高.  相似文献   

5.
《红外技术》2016,(11):984-989
非制冷红外焦平面热像仪用于人体测温时,需要红外热像仪具有较高的测温精度。而针对非制冷红外热像仪,随着环境温度以及吸收红外辐射的增加,将会产生较为严重的温度漂移现象,这会影响到红外探测器的响应特性,从而导致测温精度受到一定的影响。为了消除这一影响,提出了一种新的校准方法,该方法可以实现探测器温度在10℃~50℃之间变化时对非制冷红外热像仪的高精度校准。同时,对该校准方法的效果进行实验验证。结果表明:经过校准后的红外热像仪,探测器温度漂移对测温精度的影响明显降低。  相似文献   

6.
研究目的为32~34μm窄波段红外热像仪的测温方法,本文从图像处理领域出发,利用红外热像仪和标准辐射源黑体,在一定的环境温度下,采集不同温度的黑体红外图像,通过数学建模软件对黑体图像进行灰度值计算,进而探究图像灰度值与温度的相关性,并基于最小二乘法和插值拟合思想构造黑体标定曲线,根据得到的标定曲线和已有的灰度值推出验证温度。经验证结果表明,测温精度有所提升,误差在049℃以内。  相似文献   

7.
以红外辐射理论及红外热像仪测温原理为基础,为解决环境高温物体对红外测温的影响,提出反射温度补偿和入射温度补偿两种方法。分析了两种温度补偿方法的理论可行性和实际操作方案并具体进行实验测温对比。对4个硫化矿样本分别应用两种补偿方法同未经补偿的红外测温进行实验测温对比研究,分析结果显示:经过温度补偿后,相对误差明显小于未经补偿的红外测温,且反射温度补偿法较入射温度补偿法更为精确,验证了两种温度补偿方法的可用性及精确性。两种补偿方法在保证测量精度的同时拓宽了普通红外热像仪的应用范围,保证了硫化矿自燃红外预测数值精度。  相似文献   

8.
张澎  郭玲  王琦  关威  傅莉 《红外》2014,35(9):6-9
红外测温仪器的精度和被测物体表面的发射率对测量物体红外辐射特性的准确性影响很大。为了提高物体表面发射率的计算精度,先通过标准黑体对红外热像仪进行标定。然后,利用标定好的红外热像仪测量温度,计算出被测物体表面的发射率。将基于神经网络的红外热像仪标定方法应用到目标发射率的求解方法中,有效地消除了热像仪的系统误差。测试装置简单,测试结果准确。同时,温度和发射率的精确测量为红外隐身材料的研制奠定了基础。  相似文献   

9.
杨炎龙  徐超 《红外技术》2022,44(1):33-40
重建人体体表三维温度场能够为包括诊断在内的多项人体医学分析提供可靠数据.由于红外成像具有温度测量精度低、成像分辨率不足以及显示效果较差等缺陷,导致重建的目标三维温度场的可靠性存在不足.针对这些问题,提出一种针对人体体表的三维温度场的融合重建方法.即首先采用黑体测温标定的方法,对红外热像仪的测温结果进行误差修正;其次对红...  相似文献   

10.
通过对传统的红外热像仪测温采用拟合曲线及单向查表的算法分析,针对测温精度低,并且在不同环境温度下温度整体偏移等缺点,提出了一种双向查找表的测温算法。依据普朗克定律,利用标准面源黑体对热像仪进行标定,定标出温度查找表和环境温度补偿表,并且将两个定标表格存入测温系统存储器中。对目标物体进行温度测量时,根据目标物体的热像图灰度值和热像仪热电偶反馈的当前环境温度值,计算出目标物体的温度值和环境温度补偿值,利用环境温度补偿值对目标物体进行测温误差补偿,能够准确地测量出当前环境下的目标物体实际温度。实测结果表明,该方法测温精度可达到0.5℃,并且在不同测温环境温度下温度测量值稳定性较好。  相似文献   

11.
红外成像干扰模拟靶标(JST)用以在红外成像导引系统(IRIGS)抗干扰性能测试中为IRIGS提供干扰源,目前普遍采用的数字仿真法受仿真精度的制约不能准确的模拟各类干扰源,为此本文提出了一种基于热电器件阵列的红外成像干扰模拟靶标生成方法。但是实验中发现在热像仪温度反演过程中,利用传统的黑体定标方法将引入发射率补偿误差,并且随着工作时间的增加,热像仪发生温度漂移现象,严重的影响了热像仪温度反演精度。针对以上问题,提出了一种基于靶标敏感单元的热像仪标定方法及漂移补偿算法,实验结果表明,该方法能够使热像仪温度反演误差由7℃降低至0.5℃。  相似文献   

12.
红外辐射面源黑体应用于特定红外特性目标的模拟,各种红外探测、制导系统的外场测试。随着空间应用的红外成像器的口径的增大,红外辐射面源的口径也相应增大,为了保证超大辐射面黑体的性能指标满足要求,必须对其在真空低温条件下进行性能校准。但目前国内还没有相应计量标准,无法保证测试结果的准确可靠。设计了一种真空低温环境下超大面源黑体现场校准装置,实现对超大面源黑体的发射率、辐射温度、温场均匀性、温度稳定性等性能参数的校准,并取得了较好的试验结果,实现了真空低温环境下超大面源黑体的参数校准。  相似文献   

13.
陈玥  侯德鑫  叶树亮 《激光与红外》2020,50(9):1088-1094
导热石墨膜是多层薄膜复合材料,等效面向导热系数是表征其性能的关键参数。基于热流环路积分的无损测试方法依赖于热像仪测温,但目前对热像仪测温引起的不确定度传递缺乏深入研究。通过测温模型分析,提出热像仪增益系数标定和偏置系数非均匀性是主要不确定度来源,且二者均受时变特性影响。基于两个恒温辐射源对热像仪时变特性实验分析,认为增益系数均匀且稳定,而偏置系数时变且非均匀,为不确定度的主要来源。因此提出使用外部合作黑体在20 s内进行实时偏置系数校正的措施,校正后偏置系数非均匀性引入的影响降低至0.37 %,增益系数标定结果相对标准差为0.99 %。测温影响传递到导热系数测试的不确定度为1.03 %。本文工作对其他定量热成像应用不确定度分析具借鉴意义。  相似文献   

14.
为确保辐射测量精度,需要对红外辐射测量系统进行标定。在分析红外辐射测量系统工作原理的基础上,提出了内、外标定相结合的标定方法,区别于传统的标定方法,不再把测量系统当作黑盒子,而是对其内部分解进行分步标定,通过理论推导给出了内外标定方法计算公式。实验验证表明,该方法的标定精度与传统的全孔径黑体标定方法基本一致,两者之间的相对误差在1%以内,但该方法对外置大孔径面源黑体温度范围要求比较低,降低了黑体的研制难度和成本。  相似文献   

15.
热像仪非均匀性校正是热像仪应用的一个关键技术,常用的方法为基于黑体的热像仪非均匀性校正方法。多次成像法能解决基于黑体的方法受辐射源非均匀影响的问题,但该方法利用多幅热图的相对关系进行校正,在热图坐标下准确定位较为困难。本文基于多次成像法原理,提出了一种基于匀速扫描黑体的非均匀性校正方法,该方法结合了标定类和配准类基于场景的校正方法的优点,通过热像仪扫描读取黑体参考源,利用热像仪不同探测单元对黑体同一场景点响应的差异进行非均匀性评价。相比多次成像法,本文的方法更容易实现且具有更好的抗噪声能力。利用本文的方法对两个热像仪进行非均匀性校正,结果表明确实可以分离黑体非均匀性,但提高了对黑体辐射源和热像仪时间稳定性的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号