首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
为了研究激光等离子体相互作用过程中逆韧制辐射效应,用1064nm Nd:YAG激光器诱导产生紫铜等离子体,建立3条铜原子谱线的Boltzmann图,计算得到紫铜等离子体的电子温度为6902K。通过测量铜原子谱线324.75nm的Stark展宽,计算得到紫铜等离子体的电子密度为3.6×1017cm-3;基于铜等离子体的特征参量,得到紫铜等离子体的逆韧制辐射系数是0.021cm-1。结果表明,该光谱分析方法可以在避免对等离子体产生扰动的情况下,得到等离子体的特征参量。  相似文献   

2.
基于LIBS技术的黄铜等离子体特征参量的研究   总被引:5,自引:4,他引:1       下载免费PDF全文
为了减小测量误差,采用改进的Boltzmann方法和Lorentz函数拟合方法,迭代计算得到黄铜等离子体的电子温度是6051K,拟合CuⅠ324.75nm得到等离子体的电子密度是3.31017cm-3.结果表明,经过9次迭代,电子温度的线性相关系数由0.73提高到0.98;经过15次叠加,电子密度的拟合相关度由0.90提高到0.96.这一结果对于精确求解等离子体的特征参量是有帮助的.  相似文献   

3.
为了了解激光诱导等离子体的演化过程,得到等离子体的相关参量,采用横向激励大气压CO2激光器在抛物反射面中聚焦击穿空气形成等离子体,利用成像光谱仪和增强型CCD探测器对激光诱导等离子体进行了时间和空间分辨的实验分析,取得了激光诱导空气等离子体的时间演化和空间分辨光谱。分别利用氧原子的线状谱和连续谱的比值及谱线半峰全宽计算得到电子温度达到了4104K,电子密度在1018cm-3量级。结果表明,相比于低能量的激光诱导等离子体的辐射光谱,高能量激光诱导的等离子体则向外辐射出很强的连续光谱,同时,等离子体以激光支持爆轰波的形式快速向外膨胀,由于外围等离子体对激光能量的屏蔽作用,等离子体出现了空间分离的现象。该研究结果对理解等离子体和高能量脉冲激光的相互作用过程是有帮助的。  相似文献   

4.
为了深入研究激光诱导等离子体的物理特性,提高激光诱导击穿光谱(LIBS)技术的测量精度和可靠性,对激光诱导等离子体的时间演化过程进行了实验研究。采用ICCD相机对激光诱导铝合金等离子体进行快速成像,发现激光诱导铝合金等离子体的寿命大约为30μs,等离子体呈现明显的分层结构,并且不同区域的面积和温度在等离子体的时间演化过程中呈现不同的特征。通过玻尔兹曼斜线法和Stark展宽法计算了铝合金等离子体电子温度和电子数密度的时间演化规律。实验结果表明,等离子体的电子激发温度在6000K~9000K之间,且前3μs下降较快;等离子体电子数密度为1017 cm-3量级,并随ICCD探测延迟时间缓慢降低。等离子体电子温度和电子数密度的时间演化规律与ICCD相机快速成像结果一致。  相似文献   

5.
为了精确得到铝合金标样等离子体的电子温度和电子密度,实验采用激光诱导击穿光谱技术,利用532 nm 调Q Nd:YAG 激光器诱导产生铝合金E311 等离子体。测量铁原子谱线(381.59 nm)的Stark 展宽(0.12 nm)得到等离子体的电子密度是4.31016 cm-3;基于铁原子谱线(370.56, 386.55,387.25, 426.05, 427.18, 430.79, 432.57, 440.48 nm),利用迭代Boltzmann 算法,得到回归系数为0.999时等离子体的电子温度是8 699 K。基于铝合金标样(E311、E312、E313、E314、E315、E316)和铁原子谱线404.58 nm,建立了铁元素的标准曲线,计算得到铁元素的探测限是0.0779 wt%。等离子体特征参数表明铝合金等离子体满足光学薄和局部热力学平衡状态。  相似文献   

6.
缓冲气压对CO2激光Al靶等离子体参量的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究缓冲气压对激光等离子体参量的影响,利用CO2,激光烧蚀A1靶产生等离子体,缓冲气压变化范围为10-4Pa~2103Pa,激光脉冲能量为180mJ/脉冲,在局域热平衡和光学薄等离子体假设下,采用发射光谱法计算了等离子体的电子温度和电子密度,并研究了缓冲气压对这些参量的影响。结果表明,等离子体的电子温度和电子密度分别在1.05eV~2.47eV与1.951016cm-3~10.5 1016cm-3范围内,Al等离子体的电子温度随气压的增大而减少;低缓冲气压时,电子密度随气压增大而减小,当气压达到600Pa时,激光脉冲会击穿空气形成等离子体,电子密度又开始上升,当气压超过3000Pa时,空气等离子体会屏蔽激光脉冲能量,使到达靶面的激光能量急剧下降,Al原子的特征谱线也随之减弱而几乎消失。这一结果对理解缓冲气压对激光与物质相互作用过程的影响是有帮助的。  相似文献   

7.
激光作用锡靶等离子体极紫外光转换效率与等离子体特性密切相关。为了对等离子体特性进行诊断,设计了一种用于激光等离子体诊断的朗缪尔探针,取得了不同激光能量下产生的锡等离子体电子温度与电子密度的时间演化。结果表明,能量为58.1mJ的激光产生的等离子体峰值电子密度约为4.5×1011cm-3,最大电子温度为16.5eV,均随激光能量减少而降低,与发射光谱法所测的电子温度演化趋势一致。该研究为激光等离子体极紫外光源提供了一种新的简单快速诊断方法,有利于对激光等离子体的极紫外光源的参量进行优化。  相似文献   

8.
碳片的空间约束对土壤等离子辐射特性的影响   总被引:4,自引:1,他引:3  
为改善激光诱导击穿光谱的质量,提高激光诱导击穿光谱技术对土壤样品的检测能力,研究了圆形碳片距离样品表面的高度变化对土壤等离子体辐射强度的影响,并通过Boltzmann图方法和光谱线Stark展宽法测量了等离子体的电子温度和电子密度。实验结果表明,当有碳片从轴向约束等离子体时,等离子体辐射强度比没有碳片约束时的明显增强;随着碳片距离样品表面高度的加大,等离子体辐射强度逐渐升高并在11mm处达到最强,随后减弱。计算可知,样品中元素Fe、Mn、K和Ti在碳片距离靶面11mm处的谱线强度要比无碳片约束时的分别提高179.88%、117.02%、123.21%和91.24%;光谱信噪比分别提高107.30%、92.26%、68.48%和67.66%;等离子体的电子温度升高2800K,电子密度升高2.16×1016 cm-3。研究结果为土壤中痕量元素的检测提供了一种简单、易行的方法。  相似文献   

9.
提高激光诱导击穿光谱(LIBS)的信号强度是提高LIBS探测灵敏度的重要途径。本文以铜靶为烧蚀样品,研究了大气环境中不同空间约束壁数(0、2、3、4)和圆柱形约束壁对激光诱导Cu等离子体光谱的影响,并通过Boltzmann图方法测量了等离子体的电子温度。实验结果表明:当使用约束壁约束Cu等离子体时,Cu原子谱线强度、信背比和电子温度均比不存在约束时明显提高;随着腔体约束壁数增加,Cu原子谱线强度、信背比和电子温度逐渐提高;当腔体约束壁为圆柱形时,Cu原子谱线强度、信背比和电子温度最高。空间约束壁为圆柱形壁时空间约束对等离子体的约束效果最好,光谱信号最优。  相似文献   

10.
空气等离子体的电子温度和密度对激光诱导空气击穿等离子体产生闪光过程的研究有着重要的意义,本文将纳秒Nd∶YAG脉冲激光(1064 nm)聚焦于大气中,诱导其产生等离子体闪光,并通过Avantes-ULS3648型9通道的光谱仪采集闪光光谱,通过光谱分析,研究了不同延迟时间下激光诱导击穿空气等离子体产生过程中的等离子体电子温度和电子密度的变化情况。根据同一元素不同峰值位发出的光谱,由相对强度比较法可以得出等离子体电子温度,由斯塔克展宽法可得到等离子体电子密度的变化,通过分析发现,等离子体电子温度和密度均随延迟时间的增大而下降。这些结果对研究强激光作用下空气击穿的气体动力理论机制有一定的科学意义。  相似文献   

11.
激光诱导Al等离子体中电子密度和温度的实验研究   总被引:11,自引:6,他引:11  
激光烧蚀等离子体在微量元素分析方面有着重要的应用背景,而缓冲气体的种类及压力对激光等离子体的特性有重要影响。报道了以氦气、氩气、氮气和空气作为缓冲气体,实验测定了不同气压下Nd:YAG激光烧蚀Al靶产生的等离子体中的时间分辨发射光谱,利用发射谱线的Stark展宽和相对强度计算了等离子体中的电子密度和温度,得到了在不同缓冲气体中激光诱导Al等离子体的电子密度随延时、气压的演化规律,同时得到了电子温度的时间演化特性。实验结果表明,电子密度的数量级约为10^17cm^-3,电子温度测量值约为10000K,二者都是在激光脉冲后随时间快速衰减,直到4μs以后达到一个较低的水平并缓慢变化,其中以氩气作为缓冲气体时等离子体中的电子密度最大。  相似文献   

12.
为了研究样品温度变化对激光诱导铜等离子体特征参数的影响,利用单脉冲激光诱导激发加热台上的样品形成等离子体, 改变样品温度获得相应的黄铜等离子体发射光谱。分析了样品温度变化时特征谱线强度的变化,并在局部热 平衡(Local thermodynamic equilibrium, LTE)条件下,利用Boltzman方程和Stark展宽计算并获得不同样品温度 条件下等离子体电子温度和电子密度随时间的演化规律,同时讨论了激光诱导金属等离子体光谱增强的原因。 实验结果表明,延迟时间相同时,样品温度越高,谱线强度越强,电子温度和电子密度越大。由此可见, 适当升高样品温度可以提高谱线强度。  相似文献   

13.
Infrared measurements have been performed on semimagnetic semiconductor HgSe:Fe with concentrations of iron from 2 ×1018cm-3 to 7×1019cm-3 in the wavelength region of 300 cm-1 to 2500 cm-1 and the temperature range from 11K to 300K, for the absorption spectra, and 300K, for the reflectivity spectra, respectively.Calculations of free carrier absorption coefficient and reflectivity based on Drude theory have also been carried out.It was found that the calculated values of both absorption coefficient and reflectivity agree very well with the measured values. This proves that Drude theory can be used to explain the free-carriers absorption and reflectivity of HgSe:Fe. Thus, the parameters of material, such as plasma frequecy, high frequency dielectric constant and damping constant, can be then obtained from the fitting of theory to experiment. Furthermore, two other physical parameters, i.e. the concentration of free carriers and effective mass averaged over energy band, can be evaluated.  相似文献   

14.
制备了Al0.1 Ga0.9N/GaN异质结P-I-N结构可见盲正照射紫外探测器.用能量为O.8MeV的电子对器件依次进行注量为5×1014,5×1015和5×1016n/cm2的辐照.通过测量辐照前后器件的Ⅰ-Ⅴ曲线和光谱响应曲线,讨论了不同注量的电子辐照对Al0.1Ga0.9N/GaN异质结P-I-N器件性能的影响.实验表明,小注量的电子辐照对器件的反向暗电流影响不大,当电子注量≥5×1O16n/cm2时才使器件的暗电流增大一个数量级.为了分析器件的辐照失效机理,制备SiN/GaN的MIS结构,并对其进行电子辐照,发现SiN/GaN之间的界面态随着电子辐照注量的增加而增加.这表明,器件的暗电流的增大的原因之一为钝化层与GaN材料之间因为辐照诱生的界面态.辐照前后器件的光谱响应曲线表明,电子辐照对器件的响应率没有产生明显的影响.  相似文献   

15.
大气压低温等离子体射流的长度和温度是射流的两个重要的参数,本文利用10kHz的正弦高压驱动在大气环境中产生了稳定的Ar等离子体射流,并对射流的长度特性和温度特性进行了研究。研究发现射流的长度随着外加电压的增加而增加,随着气流速率的增加先增加,到达一定值后又逐渐减小。利用光纤温度计和光谱仪测量并计算了射流的宏观温度以及电子激发温度,发现射流的宏观温度接近室温,而电子激发温度均小于1.5×104K,基本属于冷等离子体范畴,并且它们均随着外加电压的增加而增加。  相似文献   

16.
本文采用独特的工艺和装置,用水平法研制GaSb单晶.已获得不掺杂p型晶体,室温下其载流子浓度和迁移率分别为1.0~1.7×10~(17)cm~(-3)和630~780cm~2/V·s;渗Te的n型单晶两者分别为1.4×10~(18)cm~(-3)和2690cm~2/V·s,成晶率大于50%.本文还探讨了研制过程中存在的几个问题.  相似文献   

17.
张洪彬  宫晗  郑宏兴 《微波学报》2012,28(S1):495-497
对引起电磁波在非磁化等离子体中衰减的两个因素——等离子体温度和电子密度进行了分析。当等离子体电 子密度达到6.0×1017/m3,温度在600K 以上时,等离子体吸收效果明显。研究结果表明电子密度是影响电磁波吸收的 根本原因; 在现有等离子体发生器能产生的电子密度下,1200K 为最佳温度值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号