首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
为了精确得到铝合金标样等离子体的电子温度和电子密度,实验采用激光诱导击穿光谱技术,利用532 nm 调Q Nd:YAG 激光器诱导产生铝合金E311 等离子体。测量铁原子谱线(381.59 nm)的Stark 展宽(0.12 nm)得到等离子体的电子密度是4.31016 cm-3;基于铁原子谱线(370.56, 386.55,387.25, 426.05, 427.18, 430.79, 432.57, 440.48 nm),利用迭代Boltzmann 算法,得到回归系数为0.999时等离子体的电子温度是8 699 K。基于铝合金标样(E311、E312、E313、E314、E315、E316)和铁原子谱线404.58 nm,建立了铁元素的标准曲线,计算得到铁元素的探测限是0.0779 wt%。等离子体特征参数表明铝合金等离子体满足光学薄和局部热力学平衡状态。  相似文献   

2.
为了减小谱线自发辐射跃迁几率等参量的不确定性带来的计算误差,采用一种改进型的迭代Boltzmann算法研究了激光诱导水垢等离子体的电子温度,经过12次迭代,线性相关系数由0.7687提高到0.99991,得到水垢等离子体的电子温度为5012K。Lorentz函数拟合Ca Ⅱ 393.37nm得到水垢等离子体的电子密度是5.7×1016cm-3,远高于临界值6.4×1015cm-3,证明激光诱导水垢等离子体满足局部热力学平衡模型。结果表明,本方法不仅操作简单,而且可以明显提高等离子体特征参量的求解精度。  相似文献   

3.
Nd∶YAG脉冲激光聚焦到Al靶表面,烧蚀Al靶,产生Al等离子体。用Ar气作保护气时,将诱发Ar气电离,产生丰富的Ar 离子辐射。文中根据Ar 离子辐射信息,分析了ArⅡ385.06nm、ArⅡ386.85nm、ArⅡ404.29nm等三条谱线的时间分辨行为,计算了Al等离子体离子辐射时期的电子温度;估算了特征辐射时期的电子密度。结果发现:在Al等离子体离子辐射时期,电子温度约1.2~1.9eV,随延迟时间增加,单调递减;在特征辐射时期,电子密度大约是2×1018cm-3。  相似文献   

4.
Nd∶YAG脉冲激光聚焦到Al 靶表面,烧蚀Al 靶,产生Al 等离子体。用Ar 气作保护气 时,将诱发Ar 气电离,产生丰富的Ar + 离子辐射。文中根据Ar + 离子辐射信息,分析了Ar Ⅱ385. 06nm、Ar Ⅱ386. 85nm、Ar Ⅱ404. 29nm等三条谱线的时间分辨行为,计算了Al 等离子体离子辐射时期的电子温度;估算了特征辐射时期的电子密度。结果发现:在Al 等离子体离子辐射时期,电子温度约1. 2~1. 9eV ,随延迟时间增加,单调递减;在特征辐射时期,电子密度大约是2 ×1018 cm- 3 。  相似文献   

5.
在可见光区域内研究激光引发的等离子体光谱法(LIPS).发现不同靶材产生的等离子体的空间形状和发光颜色不一样,而且不管激光以多大角度入射于靶,产生的等离子体都垂直于靶面向外辐射.不同靶材产生的等离子体谱线分析的最佳位置与待分析元素的原子量有关,放置在最佳位置时可以得到信噪比高的待测元素的辐射谱.此外在混合物靶材引发的等离子体中还发现ArI离子的特征谱线,如在紫铜和镀Zn的Fe中发现578.352m的ArI离子特征谱线,而在黄铜中发现578.155m的ArI离子特征谱线.  相似文献   

6.
利用增强电荷耦合器(ICCD)光谱探测系统对飞秒激光诱导的Zn等离子体发射光谱进行时间分辨的采集和分析,研究飞秒激光等离子体光谱及其参量的时间演化特性。分析Zn等离子体的连续谱和特征谱的谱线强度随时间的演化,发现连续谱先出现且寿命只有100 ns,随后出现特征谱,对应于不同跃迁的谱强度不同。同时由谱线的展宽和强度及其跃迁能级的相关参数等得到电子密度和温度随时间的演化规律。对谱线频移进行了分析,研究发现在等离子体膨胀初期Zn原子特征谱线(Zn I)481.0 nm的特征谱线存在较大红移,可达到0.23 nm,延时300 ns后,红移变得很小。频移随电子密度的变化近似呈线性关系。  相似文献   

7.
在大气环境下利用脉冲Nd:YAG激光532nm输出烧蚀Ni靶,产生了激光等离子体。在350-600nm波长范围内测定了激光诱导等离子体中Ni原子的空间分辨发射光谱。得到了385.83nm发射光谱线的Stark展宽及其随径向的变化特性。由发射光谱线的强度和Stark展宽计算了等离子体电子密度,并讨论了激光等离子体的空间演化特性。结果表明,在沿激光束方向上,当距离靶表面0-2.5mm范围内变化时,谱线的Stark展宽、线移和电子密度都随距靶面距离的增大而先增大,在离靶面约1.25mm处时达到最大值,之后随距离的进一步增大而减小;电子密度在0.1-3.0 1016cm-3范围内变化。  相似文献   

8.
缓冲气压对CO2激光Al靶等离子体参量的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究缓冲气压对激光等离子体参量的影响,利用CO2,激光烧蚀A1靶产生等离子体,缓冲气压变化范围为10-4Pa~2103Pa,激光脉冲能量为180mJ/脉冲,在局域热平衡和光学薄等离子体假设下,采用发射光谱法计算了等离子体的电子温度和电子密度,并研究了缓冲气压对这些参量的影响。结果表明,等离子体的电子温度和电子密度分别在1.05eV~2.47eV与1.951016cm-3~10.5 1016cm-3范围内,Al等离子体的电子温度随气压的增大而减少;低缓冲气压时,电子密度随气压增大而减小,当气压达到600Pa时,激光脉冲会击穿空气形成等离子体,电子密度又开始上升,当气压超过3000Pa时,空气等离子体会屏蔽激光脉冲能量,使到达靶面的激光能量急剧下降,Al原子的特征谱线也随之减弱而几乎消失。这一结果对理解缓冲气压对激光与物质相互作用过程的影响是有帮助的。  相似文献   

9.
利用波长为1064nm的Nd:YAG脉冲激光器作为激发光源,以高分辨率、宽光谱段的中阶梯光栅光谱仪和增强型电荷耦合器件为谱线分离器件和探测器件,研究了含铅污泥中铅的激光诱导击穿光谱特性。选取铅的特征谱线PbⅠ405.78nm为分析线,分别测量了PbⅠ405.78nm的谱线强度与信噪比随延时和门宽的变化关系,确定了最佳延时td=2.5μs,最佳门宽tg=3.0μs。在局部热力学平衡近似下,选取铁在360~441nm波长范围内的13条特征谱线,利用玻尔兹曼图,计算得出等离子体温度为6934K;对PbⅠ405.78nm其进行洛伦兹拟合,得到等离子体的电子密度为8.3×1016 cm-3。这些参数为进一步实现对含铅污泥的快速定量分析提供方法和技术支持。  相似文献   

10.
为了改善激光诱导击穿光谱质量,使用具有时间分辨功能的光谱仪采集激光诱导钢靶等离子体光谱,研究了钢靶等离子体辐射光谱随延迟时间的变化特性。结果表明,光谱强度和背景强度随延时皆呈指数衰减,原子谱线强度在前4μs内衰减更快但寿命较长,离子谱线存在寿命较短;采集延时对不同谱线的信噪比影响不同,Mn I403.08nm、Cr I 428.97nm、CrⅡ458.82nm、Fe I 430.79nm和FeⅡ503.57nm谱线得到的最佳延时分别为8,2,0,2,4μs。采用双线法和Boltzmann曲线法计算等离子体温度、Saha-Boltzmann方程计算电子密度,验证了在0~10μs范围内采集到的光谱信号满足局部热平衡状态。  相似文献   

11.
激光诱导Cu等离子体光谱的空间特性研究   总被引:6,自引:0,他引:6  
利用Q -开关Nd :YAG激光器产生的 1.0 6 μm、10ns的脉冲激光聚焦在空气中的Cu靶上 ,观测了激光诱导的Cu等离子体发射光谱。采用激光能量为 4 5mJ/ pulse ,分析了波长范围为 4 4 0nm到 5 4 0nm的空间分辨发射光谱。在局部热力学平衡 (LTE)条件近似下 ,根据谱线的相对强度 ,得到了等离子体电子温度约在 10 4K以上 ,给出了靶面附近电子温度和谱线半高全宽的空间演化规律。  相似文献   

12.
基于LIBS技术的黄铜等离子体特征参量的研究   总被引:5,自引:4,他引:1       下载免费PDF全文
为了减小测量误差,采用改进的Boltzmann方法和Lorentz函数拟合方法,迭代计算得到黄铜等离子体的电子温度是6051K,拟合CuⅠ324.75nm得到等离子体的电子密度是3.31017cm-3.结果表明,经过9次迭代,电子温度的线性相关系数由0.73提高到0.98;经过15次叠加,电子密度的拟合相关度由0.90提高到0.96.这一结果对于精确求解等离子体的特征参量是有帮助的.  相似文献   

13.
为了研究样品温度变化对激光诱导铜等离子体特征参数的影响,利用单脉冲激光诱导激发加热台上的样品形成等离子体, 改变样品温度获得相应的黄铜等离子体发射光谱。分析了样品温度变化时特征谱线强度的变化,并在局部热 平衡(Local thermodynamic equilibrium, LTE)条件下,利用Boltzman方程和Stark展宽计算并获得不同样品温度 条件下等离子体电子温度和电子密度随时间的演化规律,同时讨论了激光诱导金属等离子体光谱增强的原因。 实验结果表明,延迟时间相同时,样品温度越高,谱线强度越强,电子温度和电子密度越大。由此可见, 适当升高样品温度可以提高谱线强度。  相似文献   

14.
激光诱导Co等离子体电子密度的时间空间演化特性   总被引:3,自引:0,他引:3  
张保华  刘文清  崔执凤 《中国激光》2008,35(10):1485-1490
测定了激光烧蚀Co等离子体中Co原子389.408 nm发射谱线的时间空间分辨发射光谱.由发射光谱线的强度和斯塔克(Stark)展宽计算了等离子体电子密度,并由实验结果讨论了激光等离子体中电子密度的时间空间演化特性.实验结果表明,当延时在100~1000 ns变化时,等离子体中的电子密度变化范围为0.02×1017~0.73×1017 cm-3,在沿激光束方向上,当距离靶表面0~1.8 mm范围内变化时,相应的电子密度ne范围为0.3×1017~0.8×1017cm-3,等离子体电子密度在激光束方向上具有很好的对称性.  相似文献   

15.
:在激光与等离子体相互作用且激光的功率密度很高时 ,激光的强电场将使电子的热速度分布发生扭曲 ,从而改变了碰撞频率并导致吸收系数与激光强度相关 ,即出现非线性吸收。当激光强度较高时 ,非线性逆轫致吸收是对等离子体的加热起重要作用的机制。本文通过量子力学方法得出了非线性逆轫致吸收系数的公式 ,并对非线性逆轫致吸收系数进行了讨论。  相似文献   

16.
Backside copper metallization of GaAs MESFETs using TaN as the diffusion barrier was studied. A thin TaN layer of 40 nm was sputtered on the GaAs substrate before copper film metallization, as judged from the data of X-ray diffraction (XRD), Auger electron spectroscopy (AES), and cross-sectional transmission electron microscopy (TEM), the Cu/TaN films with GaAs were very stable without interfacial interaction up to 550°C annealing; the copper metallized MESFETs were thermally stressed at 300°C. The devices showed very little change in the device characteristics (<3%) after thermal stress, and the changes of the electrical parameters and RF characteristics of the devices after thermal stress were of the same order as those devices without Cu metallization, these results show that TaN is a good diffusion barrier for Cu in GaAs devices and the Cu/TaN films can be used for the backside copper metallization of GaAs MESFETs  相似文献   

17.
激光诱导Al等离子体中电子密度和温度的实验研究   总被引:11,自引:6,他引:11  
激光烧蚀等离子体在微量元素分析方面有着重要的应用背景,而缓冲气体的种类及压力对激光等离子体的特性有重要影响。报道了以氦气、氩气、氮气和空气作为缓冲气体,实验测定了不同气压下Nd:YAG激光烧蚀Al靶产生的等离子体中的时间分辨发射光谱,利用发射谱线的Stark展宽和相对强度计算了等离子体中的电子密度和温度,得到了在不同缓冲气体中激光诱导Al等离子体的电子密度随延时、气压的演化规律,同时得到了电子温度的时间演化特性。实验结果表明,电子密度的数量级约为10^17cm^-3,电子温度测量值约为10000K,二者都是在激光脉冲后随时间快速衰减,直到4μs以后达到一个较低的水平并缓慢变化,其中以氩气作为缓冲气体时等离子体中的电子密度最大。  相似文献   

18.
双谱线内标对激光诱导击穿光谱稳定性的改善   总被引:1,自引:0,他引:1       下载免费PDF全文
刘莉 《激光技术》2015,39(1):90-95
为了改善激光诱导击穿光谱稳定性,提出了一种双谱线内标算法,采用分析谱线强度与两条内标谱线强度之和归一化的方式提高分析光谱的稳定性。以钢铁中的硅元素谱线Si Ⅰ 288.16nm为例,对算法进行了数值计算和模拟,最后以锰和铜谱线为例对算法的普遍性进行了验证。结果表明,在激光诱导等离子典型温度和电子数密度区域,采用双谱线内标算法比普通内标法能更有效地改善分析谱线的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号