首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
为提高红外光学系统的目标探测识别能力,增强其温度适应能力,在分析红外材料在中波和长波红外波段的色差与热差特性的基础上,根据系统光焦度分配、双波段轴向消色差和双波段消热差等要求,利用红外色差图合理选择光学材料组合,设计了一款中波和长波红外双波段消热差系统,系统采用非制冷探测器,工作波段为3~5 m和8~12 m,由4片透镜组成,焦距为50 mm,相对空间为1:1.25,全视场角为14,总长67.9 mm。设计结果表明:在温度范围-50~60 ℃范围内,在空间频率为17 lp/mm处,系统在中波和长波波段的MTF值均大于0.4,表明系统有较强的温度适应性。  相似文献   

2.
设计了一种基于谐衍射的红外双波段共口径消热差光学系统。此光学系统的工作波段为3~5¼m及8~12¼m,焦距为45 mm,F/#为2,双色探测器为320×256、30μm制冷型探测器。谐衍射光学元件改进了衍射光学元件在宽波段上的大色散问题,解决了衍射光学元件在宽波段上的色散严重和衍射效率低下的问题。该光学系统采用谐衍射光学元件消宽波段色差和宽温度范围热差,使中波红外和长波红外在不同衍射级衍射实现谐振共焦成像,使用较少光学元件,校正了双波段红外光学系统的像差和热差。基于谐衍射的红外双波段共口径消热差光学系统在改善像质、减小体积重量、宽波段消热差等方面表现出传统光学系统不可比拟的优势。随着双波段探测器和谐衍射透镜研发制造技术的进一步发展,双波段光学系统必将在目标跟踪、识别、精确打击等军工系统中得到广泛应用。  相似文献   

3.
设计了用于制冷型红外双波段探测器的、广角光学系统,并进行了被动式消热差设计。镜头由6片透镜组成,通过不同镜片材料搭配来进行消色差设计,实现在环境温度-40~70℃范围内被动式消热差。光学系统采用中长波共焦面设计,设计波段为3.5~4.9μm和7.5~9.5μm,焦距为11 mm, F数为1.6,全视场角150°。结果表明,此光学系统工作范围大、结构简单、透过率高,能够实现在全工作温度范围内成像质量良好。  相似文献   

4.
刘芳芳  赵健  丛强  李妥妥  汤天瑾  吴俊 《红外技术》2021,43(12):1166-1171
为避免透射式系统存在的色差问题,采用离轴反射式光学系统,在三镜后加分色片,分别成像到中波探测器及长波探测器的焦面上,实现对中波红外和长波红外两个谱段信息的同时成像。该一体化系统由3个离轴反射镜和一个分色片构成,为校正系统像差,三镜采用XY多项式曲面。采用二次成像结构形式,具有100%冷光阑效率。系统F数为2.67,视场角11.4°×1.8°,工作波段为中波3.55~3.93 μm,长波10.3~12.5 μm。中波红外系统MTF平均值大于0.5@25 lp/mm,长波红外系统MTF平均值大于0.4@12.5 lp/mm,采用光学被动式消热差法对光学系统进行温度补偿,温度适应范围为-40℃~+60℃。  相似文献   

5.
双波段鱼眼红外光学系统可以获取中波和长波两波段的图像信息,同时由于其大视场的特性,可以大大增加目标信息获取范围。根据光学系统的设计要求对光学系统进行了设计,全视场196,4.4~5.4 m/7.8~8.8 m波段内清晰成像,考虑到冷光栏的制冷效应,F#严格与冷光栏匹配,达到100%的冷光栏效应。推导了大视场被动消热差公式,通过对玻璃材料的优化选择,达到了双波段消热差,所设计的光学系统结构相对简单,成像质量较好,系统各个波段在-40~60 ℃的工作温度下实现了消热差,满足使用需求。  相似文献   

6.
宽波段DMD动态红外景象仿真器投影光学系统设计   总被引:2,自引:0,他引:2       下载免费PDF全文
宽波段红外景象仿真器可用于内场评价和验证中波/长波红外双波段成像仪。详细介绍了基于数字微镜器件(DMD)的动态红外景象仿真器的组成和工作原理。重点介绍了覆盖中波和长波红外的宽波段红外投影光学系统的指标要求、设计思想和设计结果。基于离轴三反射镜系统设计的系统,具有无色差、适用波段宽、相对孔径大、结构较紧凑、成像质量好等优点。根据待测设备要求,设计了一款口径100、相对孔径F/2.84、全面视场角4.4°、成像质量接近于衍射极限的宽波段投影光学系统。  相似文献   

7.
长波红外光学系统无热化设计   总被引:7,自引:2,他引:5  
分析了衍射光学元件在红外光学系统中的消热差特性,设计了工作于8~12 μm,全视场角为6.44°的红外消热差光学系统,设计结果表明,该系统在-10℃~60℃温度范围内成像质量接近衍射极限,适用于像元尺寸为45μm的非制冷焦平面阵列探测器.  相似文献   

8.
基于激光测距和红外目标探测需求,设计了激光/红外共孔径无热化紧凑型光学系统。系统参数设计如下:工作波段为1.064mm激光和7.7~9.3mm长波红外,入瞳直径均为120 mm;激光焦距为800 mm;长波红外焦距为240 mm,F数为2,视场为2.29°×1.83°。选择带有Ritchey-Chretien(RC)反射系统的折反式光学布局,缩短系统纵向尺寸。光学系统共用主镜和次镜,利用次镜实现激光和红外分光。长波红外采用二次成像结构,达到100%冷光阑效率。通过选择合适的光学材料、结构材料和合理分配光焦度,实现了光学被动式消热差。在-50℃^+70℃范围内,激光接收能量集中度高,长波红外成像质量良好,满足实际使用需求。  相似文献   

9.
建立了工作在一定入射角度范围内的多层衍射光学元件的复合带宽积分平均衍射效率的分析模型。基于衍射光学元件所具有的独特的消色差和消热差性质,设计了一个含有双层衍射光学元件的工作在3.7~4.8mm和7.7~9.5mm红外双波段光学系统。光学系统的焦距为100mm,F#为2,采用像元数为640×512、间距为15mm的制冷型探测器。该系统在空间频率33lp/mm时,中、长波红外MTF分别高于0.52和0.16,最大RMS半径小于9.88mm,波前像差小于0.0705λ,最大离焦量小于焦深,在-40℃~71℃范围内实现了无热化设计。系统中采用的双层衍射光学元件在红外双波段的带宽积分平均衍射效率高于99.15%。入射到衍射面上的角度为0°~10°,该双层衍射光学元件在中波和长波波段的复合带宽积分平均衍射效率分别为97.70%和96.95%。  相似文献   

10.
针对国内外星载红外高光谱成像数据空白和迫切应用需求,本文提出了星载红外双谱段高光谱成像技术方案,实现高空间分辨率、高光谱分辨率和高温度灵敏度成像。工作谱段覆盖中波红外(3~5μm)和长波红外(8~125μm),中波和长波红外谱段的光谱分辨率分别为50nm和100nm,空间分辨率为60m,成像幅宽为60km,噪声等效温差优于02 K。分析确定了红外高光谱成像仪的光学系统技术指标,设计了望远光学系统、光谱成像光学系统和高光谱成像仪整体光学系统。望远光学系统采用自由曲面离轴三反设计方案,实现了大相对孔径像方远心和低畸变设计,相对畸变小于0135;光谱成像光学系统采用Wynne Offner结构形式,实现了高成像质量、轻小型化设计,不同波长的传函均接近衍射极限。设计结果表明,星载红外双谱段高光谱成像仪的光学系统成像质量优良,结构布局紧凑合理,具有较强的工程应用价值。  相似文献   

11.
由于红外搜索跟踪系统(IRST)探测距离长,伪装性良好和错误率低等特点,因此成为了空中及海上最好的探测装备。针对红外与搜索跟踪系统对多谱段的需求,设计了红外搜索跟踪双波段共孔径光学系统。具有优于单波段获取信息弱的优势,将中波红外图像和长波红外图像融合到一起,综合利用了中波红外和长波红外各自优点,提高了有效侦察率、降低虚警率。系统总焦距为400 mm,F#=2,视场角为2°,采用分光型RC系统实现3~5μm和8~12μm双波段共孔径清晰成像,为了抑制中波的热辐射杂光,对中波系统实现了二次成像。设计结果表明,系统像质优良,满足红外搜索跟踪系统的使用要求。  相似文献   

12.
谢亚峰  朴明旭  唐金力  赵渊明  连文泽  范杰平  张博 《红外与激光工程》2023,52(2):20220442-1-20220442-8
为了实现激光/红外双模导引头成像系统的小型化,简化光学系统结构,设计了四次反射的双模共光路环形孔径超薄成像系统,研究了该系统的分光路设计原理,给出了遮拦比与视场角的关系,实现了仅有单一光学元件的长波红外7.7~9.5μm和激光1.064μm双模导引头成像系统。双模环形孔径系统在长波红外波段的焦距为70 mm、等效F数为1.3、全视场为8°、空间频率为41.7 lp/mm时各视场MTF值均大于0.136。双模环形孔径系统在激光波长的焦距为53.8 mm、等效F数为1、全视场为10°、全视场范围内的光斑分布均匀。在环境温度范围为-40~80℃时,长波红外波段各视场MTF值均大于0.13,激光波长的弥散斑形状和能量分布基本不变,实现了光学被动无热化。通过公差分析可知双模环形孔径系统具备可加工性。  相似文献   

13.
双波段/多波段成像技术受到普遍重视,使得双波段光学系统特别是中、长波红外成像系统成为研究的热门之一。设计了折反射式光学系统、离轴三反射式光学系统和全折射式光学系统,分析了3种不同类型光学系统及其成像性能。采用了能同时响应中、长波红外的探测组件,系统的主要技术指标为:工作波段3~5 m、8~12 m,F/#=2,2=5.74,f=100 mm,全视场畸变2%,空间频率16.7 lp/mm处的MTF0.4。对3种不同类型系统的特点进行分析和研究,给出了各种像差曲线和光学传递函数曲线,总结了3种不同类型光学系统的优缺点。  相似文献   

14.
InAs1-xSbx属于Ⅲ-Ⅴ族化合物半导体合金材料,随Sb组分含量的不同,室温下可覆盖3~12 μm波长,并且InAsSb材料具有载流子寿命长、吸收系数大、载流子迁移率高等优点,是一种具有广阔应用前景的红外光电材料。探测器可以在150 K甚至近室温下工作,具有较高的灵敏度和探测率,是低功耗、小型化、高灵敏度和快响应中长波红外探测系统的良好选择,InAsSb中长波红外探测器受到广泛的关注和研究。本文首先简要概述了InAsSb材料的基本性质。其次,对国内外InAsSb红外探测器发展状况进行了介绍。最后,对InAsSb红外探测技术的发展进行了总结与展望。  相似文献   

15.
高明  许黄蓉  刘钧  吕宏  陈阳 《红外与激光工程》2017,46(5):518003-0518003(10)
为了提高双波段光学系统成像性能,结合可见光和中波红外的特点,设计了无光路补偿的折/衍射双波段共光路齐焦光学系统。对系统的4片透镜波段间消色差以及焦距补偿表达式进行了推导,采用4片透镜并引入二元衍射面,通过合理匹配光学系统光焦度,实现了系统共用一组光路,在可见光和中波红外两个波段的焦距一致,提高了双波段观测目标信息的一致性。设计的双波段共口径/共光路成像光学系统的工作波长为0.38~0.76 m,3~5 m,系统的焦距为90 mm,视场角为0.5,F数为3,在-40~+60℃的温度范围内采用光学被动式进行消热差设计。设计结果表明:系统结构简单,体积小,成像质量接近衍射极限。  相似文献   

16.
报道了中/长波切换工作模式的双色量子阱红外焦平面研制。通过特殊设计的器件和读出电路结构,获得了可对中波波段和长波波段选择的切换架构。突破了双色量子阱材料、器件以及读出电路等关键技术,研制出384288规模、25 m中心距双色量子阱红外焦平面探测器。在70 K条件下器件性能优良,噪声等效温差为28 mK(中波)和30 mK(长波),响应峰值波长分别为5.1 m(中波)和8.5 m(长波)。室温目标红外成像演示了探测器的双色探测功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号