首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Tuning the properties of non-fullerene acceptors (NFAs) through halogenation, including fluorination and chlorination, represents one of the most promising strategies to boost the performance of organic solar cells (OSCs). However, it remains unclear how the F and Cl choice influences the molecular packing and performance between small-molecule and polymeric acceptors. Here, a series of small-molecule and polymeric acceptors with different amounts and types of halogenation is synthesized, and the effects of fluorination and chlorination between small-molecule and polymeric acceptors are investigated. It is found that chlorinated small-molecule acceptors lead to longer exciton diffusion length and better performance compared to the corresponding fluorinated ones, which attributes to their stronger intermolecular packing mode. For polymer acceptors, in contrast, the fluorinated polymers achieve a denser packing mode and better performance, because chlorinated polymers exhibit reduced intrachain conjugation between end group moieties and linker units. This study demonstrates different halogenation effects on the packing modes and performances for small-molecule and polymeric acceptors, which provides important guidance for the molecule design of high-performance acceptors for OSCs.  相似文献   

2.
Doping is a powerful technique for tuning the electrical properties of organic semiconductors (OSCs). Although numerous studies are performed on OSC doping, thus far only a few n-type dopants have been developed. Herein, two low-cost nucleophilic organic bases are reported, namely 1,5,7-Triazabicyclo [4.4.0] dec-5-ene (TBD) and 1,5-Diazabicyclo [4.3.0] non-5-ene (DBN) for n-doping of OSCs. The two dopants are found to significantly enhance the electrical conductivity of OSCs. In particular, compared to the classic n-dopant 4-(2,3-Dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N, N-dimethylbenzylamine (N-DMBI), DBN results in significantly higher conductivity and also lower activation energy in N2200 films, indicating its high doping performance. The utilization of the n-dopants for improving device performance and controlling the device polarity of organic field-effect transistors are demonstrated. Furthermore, these dopants are employed for fabricating organic thermoelectric devices, and the power factor value of DBN-doped N2200 films is found to be about 1.6 times higher than that of N-DMBI-doped films. These results show the feasibility of using low-cost organic bases as efficient n-dopants and demonstrate their promising applications in organic electronics.  相似文献   

3.
Ultraflexible and ultra-lightweight organic solar cells (OSCs) have attracted great attention in terms of power supply in wearable electronic systems. Here, ultrathin and ultra-lightweight OSCs, with a total thickness of less than 3 µm, with excellent mechanical properties in terms of their flexibility and ability to be stretched are demonstrated. A stabilized power conversion efficiency (PCE) of 15.5% and unprecedented power-per-weight of 32.07 W g−1 at a weight of 4.83 g m−2 is achieved, which represents one of the best-performing OSCs based on ultrathin foils substrate reported to date. The ternary strategy introduces the third component of amorphous conformation of the PC71BM molecule, which can slightly reduce crystallization and aggregates without decreasing the electron mobility, thereby reducing rigidity and brittleness of the active layer. The increase in the ductility of the active layer significantly improves the mechanical flexibility of the device, resulting in over 90% retention in the PCE after 200 stretching–compression cycles. In addition, the ternary device exhibits excellent stability when stored in a N2-filled glove box, resulting in the PCE retaining over 95% of its initial efficiency even after 1000 h. This ultraflexible and ultra-lightweight photovoltaic foils constitute a major step toward the integration of power supply into malleable electronic textiles.  相似文献   

4.
Ion-gating engineering provides a new way to bridge electronics and ionics, and more importantly, bringing unprecedented opportunities for organic semiconductors (OSCs) based bioelectronics and solid-sate physics. Compared with conventional-dielectric gating, ion gating shows unique features in an extremely large electric field, high transconductance, low operating frequency, and ultrahigh carrier concentration. It therefore boosts the rapid development of different organic devices, including neuromorphic devices and amplifying transducers, and offers a powerful strategy to probe the charge transport, thermoelectric and even superconducting properties of organic materials at different scales. In this review, first, the fundamental mechanism of ion gating is discussed to enable multifunctional devices. The electrolyte materials and organic semiconductors are also summarized that are widely used in ion-gated devices and their associated properties are examined. Moreover, key concepts of manipulating ion–electron coupling are highlighted for opening up new frontiers in organic multifunctional electronics. Finally, the challenges and perspectives on the ion gating of OSCs are proposed to highlight the directions that deserve attention in this emerging interdisciplinary field.  相似文献   

5.
Stretchable organic solar cells (OSCs) simultaneously possessing high-efficiency and robust mechanical properties are ideal power generators for the emerging wearable and portable electronics. Herein, after incorporating a low amount of trimethylsiloxy terminated polydimethylsiloxane (PDMS) additive, the intrinsic stretchability of PTB7-Th:IEICO-4F bulk heterojunction (BHJ) film is greatly improved from 5% to 20% strain without sacrificing the photovoltaic performance. The intimate multi-layers stacking of OSCs is also realized with the transfer printing method assisted by electrical adhesive “glue” D-Sorbitol. The resultant devices with 84% electrode transmittance exhibit a remarkable power conversion efficiency (PCE) of 10.1%, which is among the highest efficiency for intrinsically stretchable OSCs to date. The stretchable OSCs also demonstrate the ultra-flexibility, stretchability, and mechanical robustness, which keep the PCE almost unchanged at small bending radium of 2 mm for 300 times bending cycles and retain 86.7% PCE under tensile strain as large as 20% for the devices with 70% electrode transmittance. The results provide a universal method to fabricate highly efficient intrinsically stretchable OSCs.  相似文献   

6.
Molecular doping is a powerful and increasingly popular approach toward enhancing electronic properties of organic semiconductors (OSCs) past their intrinsic limits. The development of n-type dopants has been hampered, however, by their poor stability and high air-reactivity, a consequence of their generally electron rich nature. Here, the use of air-stable carboxylated dopant precursors is reported to overcome this challenge. Active dopants are readily generated in solution by thermal decarboxylation and applied in n-type organic field-effect transistors (OFETs). Both 1,3-dimethylimidazolium-2-carboxylate (CO2-DMI) and novel dopant 1,3-dimethylbenzimidazolium-2-carboxylate (CO2-DMBI) are applied to n-type OFETs employing well-known organic semiconductors (OSCs) P(NDI2OD-T2), PCBM, and O-IDTBR. Successful improvement of performance in all devices demonstrates the versatility of the dopants across a variety of OSCs. Experimental and computational studies indicate that electron transfer from the dopant to the host OSC is preceded by decarboxylation of the precursor, followed by dimerization to form the active dopant species. Transistor studies highlight CO2-DMBI as the most effective dopant, improving electron mobility by up to one order of magnitude, while CO2-DMI holds the advantage of commercial availability.  相似文献   

7.
Recent improvements in solution‐coated organic semiconductors (OSCs) evidence their high potential for cost‐efficient organic electronics and sensors. Molecular packing structure determines the charge transport property of molecular solids. However, it remains challenging to control the molecular packing structure for a given OSC. Here, the application of alternating electric fields is reported to fine‐tune the crystal packing of OSC solution‐shearing coated at ambient conditions. First, a theoretical model based on dielectrophoresis is developed to guide the selection of the optimal conditions (frequency and amplitude) of the electric field applied through the solution‐shearing blade during coating of OSC thin films. Next, electric field‐induced polymorphism is demonstrated for OSCs with both herringbone and 2D brick‐wall packing motifs in 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene and 6,13‐bis(triisopropylsilylethynyl) pentacene, respectively. Favorable molecular packing can be accessible in some cases, resulting in higher charge carrier mobilities. This work provides a new approach to tune the properties of solution‐coated OSCs in functional devices for high‐performance printed electronics.  相似文献   

8.
Ternary strategy is demonstrated as an efficient approach to achieve high short-circuit current and open-circuit voltage to boost the performance of organic solar cells (OSCs), however, the realization of high fill-factor (FF) in ternary OSCs has been rare. In this study, three thiophene terminated non-fullerene acceptors (NFAs) with methyl or chlorine substitutions on their end-groups are designed and synthesized, and further incorporated into the state-of-the-art PM6:L8-BO system to construct ternary OSCs. Subtle changes in their chemical structures significantly modify the molecular packings of these thiophene terminated NFAs. While BTP-ThMe and BTP-ThCl have limited forms of dimer, versatile molecular dimers, including “Z” shaped D-D, “S” shaped A-A, and “F” shaped A-D packings exist in BTP-ThMeCl, which lead to the formation of compact 3D honey-comb network and this is analogous to the host acceptor L8-BO. This synergetic molecular packing between BTP-ThMeCl and L8-BO contributes to maintain the 3D charge transport network in the ternary system via the formation of NFA co-crystals at the molecular level, and consequently realizing a maximum power conversion efficiency of 19.1% with a superior FF of 82.2%, which is the highest FF reported so far for OSCs.  相似文献   

9.
Understanding two mesomerism-like forms (quinoid vs. benzenoid structures) over organic semiconductors (OSCs) is essential for achieving high electronic device performance. Herein, we report the synthesis as well as the comparative physicochemical, microstructural, and charge-transporting analysis of dicyanomethylene-quinoid versus dicyanovinyl-benzenoid OSCs based on benzo[1,2-b:4,5-b′]dithiophene (BDT) units (DCM-Q-BDT and DCV-B-BDT). The electron-deficient nature of the quinoid structure in DCM-Q-BDT can lower the LUMO level and bandgap relative to the benzenoid analogy DCV-B-BDT. Top-gate/bottom-contact (TG/BC) field-effect transistors (OFETs) based on DCM-Q-BDT show not only the maximum electron mobility up to 0.23 cm2/V.s without requiring post-annealing treatments, but also demonstrate excellent air stability (half-life times of drain current ≈ 35 h) without any encapsulation. The superior n-channel performance for DCM-Q-BDT is due to the anisotropic orientation, high degree of the crystallinity, and low-lying LUMO induced by the quinoid structure. Our study shows underlying structure–property relationships in quinoid over benzenoid OSCs while demonstrating promise in n-channel OFETs.  相似文献   

10.
Deposition of metallic electrodes on a semiconductor medium is an indispensable factor in governing carrier injection, and a metal/semiconductor contact that can be formed via solution process is highly desired in printed electronics. However, fine‐patterning the solution processes of metallic electrodes without damaging the excellent electronic properties of organic semiconductors (OSCs) is still a challenge. In this work, electroless plating, a metal coating technique that involves auto‐catalytic reaction in an aqueous solution, is used to fabricate top‐contact organic thin‐film transistors (OTFTs). An electroless‐plated gold pattern with a spatial resolution of 10 micrometers is transferred and laminated on a monolayer of OSCs to serve as a hole‐injection electrode. The fabricated OTFTs exhibit reasonably high field‐effect mobility of up to 13 cm2 V?1 s?1 and decent contact resistance as low as 120 Ω · cm, which implies that an ideal metal/semiconductor contact can be realized. This electroless plating technique can provide possibilities for practical mass production of organic integrated circuits because it is in principle cost‐effective, capable of covering large areas, high‐vacuum free, and environmentally friendly.  相似文献   

11.
Efficient heat transfer is beneficial to heat dissipation and the thermal durability of organic solar cell (OSCs). In this regard, heat transfer properties of organic semiconductors within OSCs should play important roles, but their thermal properties are rarely explored. Here, heat diffusion properties of Y-series non-fullerene acceptors processing different DA′D framework, named BZ4F-5, BZ4F-6, and BZ4F-7 are probed; it is found that backbone rings extension from five- to six- and seven-membered-fused rings trigger longer phonon mean free path and higher thermal diffusivities (D) in their pristine solid films and bulk heterojunction blends. Particularly, the correlation between the thermal transport properties in Y-series acceptors and their backbone geometry, molecule stacking, and thin-film crystallinity is demonstrated. More importantly, both organic thin-film transistors and OSCs confirm that thermal durability of organic semiconductor devices correlated with the thermal properties of their active layer. Although BZ5F-6 and BZ4F-7 based devices possess similar device performance at room temperature, superior heat dissipation in BZ4F-7 molecule endows it with enhanced device lifetime. These results contribute to critical design criteria for future molecular optimization in photovoltaic and optoelectronic devices.  相似文献   

12.
The field of organic electronics has been developed vastly in the past two decades due to its promise for low cost, lightweight, mechanical flexibility, versatility of chemical design and synthesis, and ease of processing. The performance and lifetime of these devices, such as organic light‐emitting diodes (OLEDs), photovoltaics (OPVs), and field‐effect transistors (OFETs), are critically dependent on the properties of both active materials and their interfaces. Interfacial properties can be controlled ranging from simple wettability or adhesion between different materials to direct modifications of the electronic structure of the materials. In this Feature Article, the strategies of utilizing surfactant‐modified cathodes, hole‐transporting buffer layers, and self‐assembled monolayer (SAM)‐modified anodes are highlighted. In addition to enabling the production of high‐efficiency OLEDs, control of interfaces in both conventional and inverted polymer solar cells is shown to enhance their efficiency and stability; and the tailoring of source–drain electrode–semiconductor interfaces, dielectric–semiconductor interfaces, and ultrathin dielectrics is shown to allow for high‐performance OFETs.  相似文献   

13.
N‐type organic small molecules (SMs) are attracting attention in the organic electronics field, due to their easy purification procedures with high yield. However, only a few reports show SMs that perform well in both organic field‐effect transistors (OFETs) and organic solar cells (OSCs). Here, the synthesis and characterization of an n‐type small molecule with an indacenodithieno[3,2‐b]thiophene (IDTT) core unit and linear alkylated side chain (C16) (IDTTIC) are reported. Compared to the state‐of‐the‐art n‐type molecule IDTIC, IDTTIC exhibits smaller optical bandgap and higher absorption coefficient, which is due to the enhanced intramolecular effect. After mixing with the polymer donor PBDB‐T, IDTIC‐based solar cells deliver a power conversion efficiency of only 5.67%. In stark contrast, the OSC performance of IDTTIC improves significantly to 11.2%. It is found that the superior photovoltaic properties of PBDB‐T:IDTTIC blends are mainly due to reduced trap‐assisted recombination and enhanced molecular packing coherence length and higher domain purity when compared to IDTIC. Moreover, a significantly higher electron mobility of 0.50 cm2 V−1 s−1 for IDTTIC in OFET devices than for IDTIC (0.15 cm2 V−1 s−1) is obtained. These superior performances in OSCs and OFETs demonstrate that SMs with extended π‐conjugation of the backbone possess a great potential for application in organic electronic devices.  相似文献   

14.
Ternary organic solar cells (OSCs) represent an efficient and facile strategy to further boost the device performance. However, the selection criteria and rational design of the third guest small molecule (SM) material still remain less understood. In this study, two new SM donor isomers, with α-chlorinated thiophene (αBTCl) and β-chlorinated thiophene (βBTCl) as side chains, are systematically designed, synthesized and incorporated as a third component in PM6:L8-BO binary blends. It is noticed that introducing the SM donors guest has extended the absorption of photo-active layer, induced desired component distribution vertically with enhanced crystallinity and reduced recombination process, leading to increased short-circuit current (JSC) and improved fill factor. Moreover, due to the synergetic suppressed nonradiative loss and preferable morphology, the ternary OSCs feature improves open-circuit voltage (VOC). Consequently, an impressive champion power conversion efficiency of 18.96% and 18.55% is achieved by αBTCl-based and βBTCl-based ternary OSCs, respectively. Furthermore, a record efficiency of 17.46% is obtained with a 330 nm thickness of αBTCl-based ternary OSCs. This study demonstrates that molecular isomerization can be a promising design approach for SM donors to construct high-performance ternary OSCs with simultaneous enhancement of all photovoltaic parameters.  相似文献   

15.
A simultaneous further increase in the power conversion efficiency (PCE) and device stability of organic solar cells (OSCs) over the current levels needs to be overcome for their commercial viability. Herein, a bay-area benzamide-functionalized perylene diimide-based electron transport layer, namely H75 is developed, to obtain the aforementioned characteristics. The advantages of H75-employed OSCs include a notable PCE up to 18.26% and outstanding device stabilities under conditions of varying severity (>95% PCE retention after 1500 h upon long-term aging and exceptional T80 lifetimes (the time required to reach 80% of initial performance) of over 1000 h in light-soaking, 500 h in thermal stress at 85 °C, 72 h in 85% high relative humidity, and 100 h in atmospheric-air conditions without encapsulation in conventional architecture). The excellent performance of H75-employed OSC can be attributed to its various beneficial features derived from the bay-area benzamide functionalities (e.g., excellent film-forming ability, suitable energy level, reduced aggregation, and intrinsic high structural stability). The findings of this work provide further insights into the molecular design of electron transport layers  for realizing more efficient and stable OSCs.  相似文献   

16.
The rapid development of flexible electronics has resulted in serious pollution in the form of electronic waste. Accordingly, recyclability is highly desirable for these devices, but this remains a significant challenge. A dynamically hybrid crosslinked polyurethane (FPU) elastomer is designed in this study to address this challenge. Distinctive Diels–Alder adducts with suitable dissociation and reassociation dynamics are designed as crosslinking units to provide an efficient time frame for recycling. FPU is maintained in a state with a low crosslinking density after heating at 120 °C for 5 min. FPU-based electronics can therefore be dissolved in chloroform under ambient conditions to separate the electronic components and polymers for the refabrication of new electronic devices. This is the first reported thermoset elastomer that can be completely recycled at room temperature without chemical treatment to decompose the polymer chain. The design concept is applied by demonstrating the fabrication by recycling of different FPU-based flexible electronic devices: position sensor, flexible keyboard, and motion sensor. Furthermore, the FPU has many advantages as a material for flexible electronics in terms of its biomimetic mechanical properties, room-temperature self-healing, and facile processability. This study provides promising new design principles to develop materials for promoting sustainable flexible electronics.  相似文献   

17.
Fused-ring non-fullerene electron acceptors (NFAs) boost the power conversion efficiencies (PCEs) of organic solar cells (OSCs). Asymmetric and halogenated NFAs have drawn increasing attention in recent years due to their unique optoelectronic properties. Starting from the symmetric NFA ITCC-M, this work systematically designs and synthesizes an asymmetric counterpart ITCC-M-2F, halogenated counterpart ITCC-Cl, and asymmetric and halogenated counterpart IDTT-Cl-2F. Among these NFAs, IDTT-Cl-2F shows the shallowest lowest unoccupied molecular orbital energy level, broader absorption range, and the tightest molecular packing. As a result, when blended with the donor PBDB-T-2Cl, IDTT-Cl-2F-based OSCs yield the highest PCE of 13.3% with an open-circuit voltage of 0.96 V, short-circuit current of 19.20 mA cm–2, and fill factor of 71.1%, which is the highest PCE of OSCs employing 2-(2-chloro-6-oxo-5,6-dihydro-4H-cyclopenta[b]thiophen-4-ylidene) malononitrile (ClIC) unit terminated NFA. The results demonstrate the synergistic effect of asymmetry and halogenation toward tuning of the optoelectronic properties of NFAs for high performance OSCs.  相似文献   

18.
Modifying metal electrodes with self‐assembled monolayers (SAMs) has promising applications in organic and molecular electronics. The two key electronic parameters are the modification of the electrode work function because of SAM adsorption and the alignment of the SAM conducting states relative to the metal Fermi level. Through a comprehensive density‐functional‐theory study on a series of organic thiols self‐assembled on Au(111), relationships between the electronic structure of the individual molecules (especially the backbone polarizability and its response to donor/acceptor substitutions) and the properties of the corresponding SAMs are described. The molecular backbone is found to significantly impacts the level alignment; for molecules with small ionization potentials, even Fermi‐level pinning is observed. Nevertheless, independent of the backbone, polar head‐group substitutions have no effect on the level alignment. For the work‐function modification, the larger molecular dipole moments achieved when attaching donor/acceptor substituents to more polarizable backbones are largely compensated by increased depolarization in the SAMs. The main impact of the backbone on the work‐function modification thus arises from its influence on the molecular orientation on the surface. This study provides a solid theoretical basis for the fundamental understanding of SAMs and significantly advances the understanding of structure–property relationships needed for the future development of functional organic interfaces.  相似文献   

19.
Nowadays, it is still a great challenge to obtain high-performance green-solvent-processed organic solar cells (OSCs). In this study, a ternary blend strategy (one donor and two acceptors, 1D/2A) is developed to solve the difficulty of film morphology modulation during the fabrication of high-performance green-solvent-processed OSCs. A typical high-performance halogenated-solvent processable binary system D18:BTP-eC9-4F is selected as the host, its green-solvents-processed devices show an inferior power conversion efficiency (PCE) of ≈16%. SM16 with two 3D shape persistent end groups is selected as the third component due to its high fluorescence quantum yield, reduced intermolecular interaction, good solubility, and moderate crystallinity. As a result, the ternary devices display bicontinuous interpenetrating networks, reduced energy loss, and suppressed charge carrier recombination losses. Hence, an excellent PCE of 18.20% is achieved for the D18:BTP-eC9-4F:SM16 ternary devices, which is much higher than D18:BTP-eC9-4F-based binary ones and also one of the highest PCEs for the green-solvents-processed OSCs. Besides, this strategy also demonstrates a good universality for other binary systems and becomes an effective pathway for the development of green-solvent processable high-performance OSCs.  相似文献   

20.
2D organic semiconductor crystals (2D OSCs) are vital for high-performance electronic and optoelectronic devices owing to their unique material merits. However, it is still challenging to fabricate high-quality and large-scale ultrathin 2D OSCs with controllable molecular layers due to the disordered molecular deposition and uncontrollable mass transport in solution-processing fabrication. Here, a vapor-induced meniscus modulating strategy for preparing unidirectional and stable Marangoni flow to guide contactless meniscus evolution is reported, which ensures uniform mass transport and ordered molecular deposition to achieve high-quality ultrathin 2D OSCs. Both the surface tension difference and the substrate wettability are critical to meniscus formation, which results in various meniscus deformation states and film morphologies. Based on the optimized vapor-solvent system, ultrathin 2D OSCs of C8-BTBT with precise layer definition are prepared controllably. The discrepancies in liquid film height and solute concentration are decisive in controlling the molecular scale thickness ranging from mono to a few layers. Moreover, the layer-dependent electronic and optoelectronic properties of the ultrathin films are systematically investigated. Notably, high-performance polarization-sensitive solar-blind photodetectors are achieved with a dichroic ratio of photocurrent up to 2.26, and the corresponding polarimetric image sensor exhibits superior solar-blind polarization imaging capability thanks to the high crystalline quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号