首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10925篇
  免费   1199篇
  国内免费   490篇
电工技术   653篇
综合类   760篇
化学工业   1824篇
金属工艺   624篇
机械仪表   697篇
建筑科学   906篇
矿业工程   276篇
能源动力   321篇
轻工业   712篇
水利工程   199篇
石油天然气   551篇
武器工业   109篇
无线电   1477篇
一般工业技术   1313篇
冶金工业   483篇
原子能技术   119篇
自动化技术   1590篇
  2024年   25篇
  2023年   218篇
  2022年   312篇
  2021年   483篇
  2020年   362篇
  2019年   307篇
  2018年   339篇
  2017年   430篇
  2016年   355篇
  2015年   393篇
  2014年   545篇
  2013年   652篇
  2012年   658篇
  2011年   707篇
  2010年   653篇
  2009年   593篇
  2008年   530篇
  2007年   564篇
  2006年   554篇
  2005年   408篇
  2004年   364篇
  2003年   493篇
  2002年   565篇
  2001年   474篇
  2000年   314篇
  1999年   264篇
  1998年   210篇
  1997年   166篇
  1996年   158篇
  1995年   115篇
  1994年   95篇
  1993年   68篇
  1992年   46篇
  1991年   50篇
  1990年   36篇
  1989年   23篇
  1988年   18篇
  1987年   12篇
  1986年   18篇
  1985年   9篇
  1984年   7篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Dense pressure-sintered reaction-bonded Si3N4 (PSRBSN) ceramics were obtained by a hot-press sintering method. Precursor Si powders were prepared with Eu2O3–MgO–Y2O3 sintering additive. The addition of Eu2O3–MgO–Y2O3 was shown to promote full nitridation of the Si powder. The nitrided Si3N4 particles had an equiaxial morphology, without whisker formation, after the Si powders doped with Eu2O3–MgO–Y2O3 were nitrided at 1400 °C for 2 h. After hot pressing, the relative density, Vickers hardness, flexural strength, and fracture toughness of the PSRBSN ceramics, with 5 wt% Eu2O3 doping, were 98.3 ± 0.2%, 17.8 ± 0.8 GPa, 697.0 ± 67.0 MPa, and 7.3 ± 0.3 MPa m1/2, respectively. The thermal conductivity was 73.6 ± 0.2 W m?1 K?1, significantly higher than the counterpart without Eu2O3 doping, or with ZrO2 doping by conventional methods.  相似文献   
2.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
3.
4.
Electroreduction of small molecules such as H2O, CO2, and N2 for producing clean fuels or valuable chemicals provides a sustainable approach to meet the increasing global energy demands and to alleviate the concern on climate change resulting from fossil fuel consumption. On the path to implement this purpose, however, several scientific hurdles remain, one of which is the low energy efficiency due to the sluggish kinetics of the paired oxygen evolution reaction (OER). In response, it is highly desirable to synthesize high-performance and cost-effective OER electrocatalysts. Recent advances have witnessed surface reconstruction engineering as a salient tool to significantly improve the catalytic performance of OER electrocatalysts. In this review, recent progress on the reconstructed OER electrocatalysts and future opportunities are discussed. A brief introduction of the fundamentals of OER and the experimental approaches for generating and characterizing the reconstructed active sites in OER nanocatalysts are given first, followed by an expanded discussion of recent advances on the reconstructed OER electrocatalysts with improved activities, with a particular emphasis on understanding the correlation between surface dynamics and activities. Finally, a prospect for clean future energy communities harnessing surface reconstruction-promoted electrochemical water oxidation will be provided.  相似文献   
5.
Large interfacial resistance plays a dominant role in the performance of all-solid-state lithium-ion batteries. However, the mechanism of interfacial resistance has been under debate. Here, the Li+ transport at the interfacial region is investigated to reveal the origin of the high Li+ transfer impedance in a LiCoO2(LCO)/LiPON/Pt all-solid-state battery. Both an unexpected nanocrystalline layer and a structurally disordered transition layer are discovered to be inherent to the LCO/LiPON interface. Under electrochemical conditions, the nanocrystalline layer with insufficient electrochemical stability leads to the introduction of voids during electrochemical cycles, which is the origin of the high Li+ transfer impedance at solid electrolyte-electrode interfaces. In addition, at relatively low temperatures, the oxygen vacancies migration in the transition layer results in the formation of Co3O4 nanocrystalline layer with nanovoids, which contributes to the high Li+ transfer impedance. This work sheds light on the mechanism for the high interfacial resistance and promotes overcoming the interfacial issues in all-solid-state batteries.  相似文献   
6.
Titanium and boron are simultaneously introduced into LiNi0.8Co0.1Mn0.1O2 to improve the structural stability and electrochemical performance of the material. X-ray diffraction studies reveal that Ti4+ ion replaces Li+ ion and reduces the cation mixing; B3+ ion enters the tetrahedron of the transition metal layers and enlarges the distance of the [LiO6] layers. The co-doped sample has spherical secondary particles with elongated and enlarged primary particles, in which Ti and B elements distribute uniformly. Electrochemical studies reveal the co-doped sample has improved rate performance (183.1 mAh·g-1 at 1 C and 155.5 mAh·g-1 at 10 C) and cycle stability (capacity retention of 94.7% after 100 cycles at 1 C). EIS and CV disclose that Ti and B co-doping reduces charge transfer impedance and suppresses phase change of LiNi0.8Co0.1Mn0.1O2.  相似文献   
7.
8.
Osteogenic glue that reproduces the natural bone composition represents the final frontier of orthopedic adhesives with the potential to revolutionize surgical strategies against comminuted fractures. However, it is difficult to achieve an all-in-one formula, which could provide flexible and reliable adhesiveness while avoiding interfering with or even promoting the healing of glued fractures. Herein, an osteogenic glue characterized by inorganic-in-organic integration between amine-modified mesoporous bioactive glass nanoparticles (AMBGN) and bioadhesive gelatin-dextran network (GelDex) is introduced as an all-in-one tool to flexibly adhere and splice bone fragments and subsequently guide fracture healing during degradation. Relying on such integration, a 4-fold improvement in cohesiveness is presented, followed by a nearly 5-fold enhancement in adhesive strength in ex vivo porcine bone samples. The reversible and re-adjustable adhesiveness also enables glue to effectively splice intricate fragments from highly comminuted fractures in the rabbit radius in an in vivo environment. Moreover, well-preserved organic–inorganic integrity during degradation of the glue guides sustained interfacial osteogenesis and achieve satisfying healing outcomes in glued fractures, as observed by the 2-fold improvement in biomechanical and radiological performance compared with commercially available cyanoacrylate adhesives. The current findings propose an all-in-one solution for the fixation of bone fragments during surgery.  相似文献   
9.
Molecular dynamics simulations are performed to investigate the solid surface-induced microstructure and friction coefficient of glycerol aqueous solutions with different water contents confined in graphene and FeO nanoslits. Results show that the friction coefficient of glycerol aqueous solutions confined in both nanoslits presents similar nonlinear variation tendencies with increasing water content, but their lowest value and the corresponding water contents differ. Distinctive microstructures of the near-surface liquid layer induced by surfaces with different hydrophilicity are responsible for their difference in lubrication. The sliding primarily occurs at the solid–liquid interface for the hydrophobic graphene nanoslit owing to almost the same velocity difference in fluid molecules. By contrast, the sliding mainly occurs at the liquid–liquid interface for the hydrophilic FeO nanoslit because of the large velocity difference in fluid molecules. The weaker the interaction force at the sliding position, the lower the friction coefficient.  相似文献   
10.
2021年9月16日,四川省泸县发生6.0级地震,对当地的文化遗产造成了不同程度的损坏。为掌握文化遗产在此次地震中的破坏情况,对古建筑、古桥、渡槽、摩崖造像、古遗址以及可移动文物进行震害调查,分析破坏原因,提出不同文化遗产的震害等级,并统计其在此次地震中破坏占比。研究结果表明:古建筑中木结构的震害较轻,砖木结构和石木结构的损伤较为严重,表现为墙体开裂、倾斜、倒塌和屋面损毁等破坏;古桥的桥面板产生裂缝和起壳,桥头堡基石发生移位;摩崖造像发生开裂、石像脱落,部分岩石发生坠落;古遗址的原有缝隙增大,石砌墙歪闪或倾斜;可移动文物与陈列台连接的金属卡件在地震下崩落。根据震害调查结果,将文化遗产的震害划分为4个等级,并对古建筑的维修与加固、摩崖造像的一体化监测、古桥的维护与应急抢险、可移动文物的隔震保护提出几点建议,为我国文化遗产的抗震保护提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号