首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
贾录良  孟艳  郭道省  王恒 《信号处理》2014,30(8):973-978
在多波束卫星通信系统中,资源利用率受星上能量的限制,提高资源利用率非常重要。为提高星上资源优化的灵活性,在考虑自由空间损耗、天线增益、雨衰和波束间干扰的基础上,提出一种基于不同业务需求和信道条件的多波束卫星通信下行链路功率带宽联合优化算法。该联合优化算法采用二阶差分目标函数,运用拉格朗日对偶理论和次梯度法求得该联合优化问题最优解的下界。仿真结果分析表明,与单独地优化功率和带宽算法相比,该功率带宽联合优化算法可以根据不同的业务需求和信道条件更加灵活地分配系统容量,提高了资源利用率。   相似文献   

2.
Xuanli WU  Xu CHEN 《通信学报》2019,40(12):86-97
Aiming at the scenarios which consider the constraint of backhaul capacity restriction and interference threshold in ultra-dense networks (UDN),an integer linear programming (ILP) and Lagrangian dual decomposition (LDD) based joint optimization algorithm of energy efficiency and spectrum efficiency was proposed.In the proposed algorithms,the user association problem with the constraint of limited backhaul capacity was modelled as an ILP problem and then finished the connection between the user and the base station of microcell by solving this problem with dynamic programming method.Therefor,Lagrangian dual decomposition (LDD) was applied in an iteration algorithm for spectrum resource allocation and power allocation.The simulation results show that compared with traditional schemes,the proposed algorithm can significantly improve the energy efficiency and spectrum efficiency of system and use the microcell’s load capacity more efficiently.  相似文献   

3.
An asynchronous distributed cross-layer optimization (ADCO) method was proposed to solve the problem of jointly considering real-time routing,rate allocation and power control in FANET (flying ad hoc network).And a delay-constrained cross-layer optimization framework was designed to formally represent proposed problem.Then Lagrangian relaxation and dual decomposition methods was used to divide joint optimization problem into several sub-problems.ADCO allowed each relay node to perform the optimization operation for different sub-problems with local information,and the relay nodes could update the dual variables based on asynchronous update mechanism.The simulation results show that the proposed algorithm can improve the network performance effectively in terms of energy efficiency,packet timeout ratio and network throughput.  相似文献   

4.
In order to improve the suppression capability of parametric perturbation and energy efficiency (EE) of heterogeneous networks (HetNets),a robust resource allocation algorithm was proposed to maximize system EE for reducing cross-tier interference power in non-orthogonal multiple access (NOMA) based HetNets.Firstly,the resource optimization problem was formulated as a mixed integer and nonlinear programming one under the constraints of the interference power of macrocell users,maximum transmit power of small cell base station (BS),resource block assignment and the quality of service (QoS) requirement of each small cell user.Then,based on ellipsoid bounded channel uncertainty models,the original problem was converted into the equivalent convex optimization problem by using the convex relaxation method,Dinkelbach method and the successive convex approximation (SCA) method.The analytical solutions were obtained by using the Lagrangian dual approach.Simulation results verifiy that the proposed algorithm had better EE and robustness by comparing it with the existing algorithm under perfect channel state information.  相似文献   

5.
In this paper we investigate an optimal solution for adaptive H.264/SVC video transmission over Multiple-Input Multiple-Output (MIMO) channels.We first write the end-to-end distortion of the H.264/SVC video transmission over a diagonal MIMO channel. The total distortion is expressed following three physical layer parameters: power allocation, modulation spectral efficiency and Error Code Correction (ECC) code rate. Minimizing the total distortion is considered as an optimization problem containing both discrete and continuous variables.We use the Lagrangian method associated with Karush–Kuhn and Tucker conditions to find out the optimal continuous physical layer parameters. Concerting the discrete modulation spectral efficiency and ECC code rate, we exploit information of the MIMO system to remove all suboptimal configurations. Therefore, the optimal power allocation is computed only for a reduced number of discrete configurations.The performance of the proposed solution is evaluated over both statistical and realistic MIMO channels. Results show that the proposed solution performs an optimal resource allocation to achieve the best QoS regardless the channel conditions.  相似文献   

6.
针对多蜂窝多用户异构网络中收发机处信号畸变、用户信息泄露和传输中断等问题,该文提出一种基于硬件损伤的异构网络鲁棒安全资源分配算法。考虑小蜂窝用户最小安全速率约束、小蜂窝基站最大发射功率约束和宏用户干扰功率约束,建立了基于有界信道不确定性的能效最大化资源分配模型。基于Dinkelbach法、最坏准则法和连续凸近似理论,将原非凸资源分配问题等价转换为凸优化问题,并利用拉格朗日对偶算法得到解析解。仿真结果表明,与现有算法相比,所提算法具有较好的能效和鲁棒性。  相似文献   

7.
针对能效提升、宏用户干扰减小的问题,该文研究了基于干扰效率最大的异构无线网络顽健资源分配算法.首先,考虑宏用户干扰约束、微蜂窝用户速率需求约束和最大发射功率约束,将资源优化问题建模为多变量非线性规划问题.其次,考虑有界信道不确定性模型,利用Dinkelbach辅助变量方法和连续凸近似方法结合对数变换方法,将原分式规划顽健资源分配问题转换为等价的确定性凸优化问题,并利用拉格朗日对偶算法获得解析解.理论分析了计算复杂度和参数不确定性对性能的影响.仿真结果表明该算法具有较好的干扰效率和鲁棒性.  相似文献   

8.
陈瑾平  杨绿溪 《信号处理》2011,27(12):1824-1830
正交频分多址(OFDMA)技术以其更高的频谱效率和抗多径衰落特性成为高速无线通信网络的候选标准。兼顾效率和公平性是OFDMA系统资源分配亟待解决的问题。本文研究了OFDMA系统中的无线资源分配问题,既要保证QoS用户的最小速率要求,同时“尽力而为”用户之间必须满足最小速率最大化公平性(max-min fairness)准则;该资源分配问题可以表述为一个系统总功率约束下的子载波分配和功率控制的混合离散型优化模型,这是难解的NP-hard问题,穷举搜索的代价是极其巨大的。针对该非凸模型,本文设计一个拉格朗日松弛的优化算法,该算法中采用修正的椭球算法求解对偶问题。算法具有多项式时间复杂度,且与子载波数目呈线性增长关系。仿真结果表明,该算法能近似最优地满足用户QoS及最大最小公平性要求。   相似文献   

9.
针对单天线多跳系统中的资源分配策略进行了研究,重点研究了基于能效最优的功率分配算法。所提算法以系统能效最大化为设计目标,以满足指定的系统服务质量(QoS, quality of service)为约束条件,建立了以源节点和中继节点发射功率为设计变量的数学优化模型。通过大信噪比区间近似等效,将原始的非凸优化问题转化为凸优化问题。再利用拉格朗日对偶函数凸优化算法,并借助于Lambert 函数,最终得到一种功率分配方案的闭合形式解,避免了采用交替迭代方法来求解最优化问题。相比传统以系统频谱效率最大化为目标的算法,所提算法能更好地提升系统整体能效,同时降低了功率分配算法的复杂度。  相似文献   

10.
Efficient radio resource management is a key issue in a multi-channel femtocell system, where femtocell base stations are deployed randomly and will generate interference to each other. In this research, we formulate multi-channel power allocation as a convex optimization problem, in order to maximize the overall system throughput under complex transmit power constraint. We apply the Lagrangian duality techniques to make the problem decomposable and propose a distributed iterative subgradient algorithm, namely Multi-channel Power Allocation and Optimization (McPAO). Specifically, McPAO consists of two phases: (I) a gradient projection algorithm to solve the optimal power allocation for each channel under a fixed Lagrangian dual cost; and (II) a subgradient algorithm to update the Lagrangian dual cost by using the power allocation results from Phase I. This two-phase iteration process continues until the Lagrangian dual cost converges to the optimal value. Numerical results show that our McPAO algorithm can improve the overall system throughput by 18?%, comparing to with fixed power allocation schemes. In addition, we study the impact of errors in gradient direction estimation (Phase I), which are caused by limited or delayed information exchange among femtocells in realistic situations. These errors will be propagated into the subgradient algorithm (Phase II) and, subsequently, affect the overall performance of McPAO. A rigorous analytical approach is developed to prove that McPAO can always achieve a bounded overall throughput performance very close to the global optimum.  相似文献   

11.
为了提高物联网(IoT)节点的运行周期和能量利用率,该文提出一种多标签无线供电反向散射通信网络能效最大化资源分配算法。考虑传输速率约束、能量收集约束以及发射功率约束,建立了基于系统能效最大化的资源分配模型。利用Dinkelbach理论、2次变换以及变量替换法,将原分式非凸问题转化为可求解的凸优化问题。通过拉格朗日对偶理论求得优化问题的全局最优解。仿真结果表明,该算法具有较好的收敛性和能效。  相似文献   

12.
In this paper, an analytical framework is proposed for the optimization of network performance through joint congestion control, channel allocation, rate allocation, power control, scheduling, and routing with the consideration of fairness in multi‐channel wireless multi‐hop networks. More specifically, the framework models the network by a generalized network utility maximization (NUM) problem under an elastic link data rate and power constraints. Using the dual decomposition technique, the NUM problem is decomposed into four subproblems — flow control; next‐hop routing; rate allocation and scheduling; power control; and channel allocation — and finally solved by a low‐complexity distributed method. Simulation results show that the proposed distributed algorithm significantly improves the network throughput and energy efficiency compared with previous algorithms.  相似文献   

13.
With the increasing energy consumption, energy efficiency (EE) has been considered as an important metric for wireless communication networks as spectrum efficiency (SE). In this paper, EE optimization problem for downlink multi-user multiple-input multiple-output (MU-MIMO) system with massive antennas is investigated. According to the convex optimization theory, there exists a unique globally optimal power allocation achieving the optimal EE, and the closed-form of the optimal EE only related to channel state information is derived analytically. Then both the approximate and accurate power allocation algorithms with different complexity are proposed to achieve the optimal EE. Simulation results show that the optimal EE obtained by the approximate algorithm coincides to that achieved by the accurate algorithm within the controllable error limitation, and these proposed algorithms perform better than the existing equal power allocation algorithm. The optimal EE and corresponding SE increase with the number of antennas at base station, which is promising for the next generation wireless communication networks.  相似文献   

14.
In this paper, we propose a cross layer congestion optimization scheme for allocating the resources of wireless sensor networks to achieve maximization of network performance. The congestion control, routing selection, link capacity allocation, and power consumption are all taken account to yield an optimal scheme based on the Lagrangian optimization. The Lagrangian multiplier is adopted to adjust power consumption, congestion rate, routing selection and link capacity allocation, so that the network performance can be satisfied between the trade-off of efficiency and fairness of resource allocation. The proposed algorithm can significantly achieve the maximization of network performance in relieving the network congestion with less power consumption. Excellent simulation results are obtained to demonstrate our innovative idea, and show the efficiency of our proposed algorithm.  相似文献   

15.
To improve energy efficiency and robustness of heterogeneous wireless networks with wireless information and power transfer,the robust joint transmit power and power splitting resource allocation problem was studied.Based on mini-max probability machine and Dinkelbach method,the original NP-hard problem was transformed into a solvable convex optimization form,meanwhile a distributed dual resource allocation algorithm was proposed.Additionally,both computational complexity and robust sensitivity were analyzed.Simulation results show that the proposed algorithm can guarantee the quality of service requirements of macro cellular users and femtocell users under channel uncertainties.  相似文献   

16.
为消除过时信道状态信息(CSI)对分布式无线多跳网络环境下跨层资源分配效率的影响,提高跨层联合资源分配的准确性,基于信道相关性提出了一种补偿式跨层联合资源分配算法。利用瞬时和过时信道状态信息之间的条件概率密度函数,基于瑞利衰落信道模型求得信噪比(SINR) 模型下条件容量的闭式解。为补偿部分网络性能的损失,提出了一种考虑过时信道状态信息的联合拥塞控制、信道分配和功率控制的算法,在此过程中网络被建模成一个NUM 问题,可变的链路数据率和功率等资源限制作为约束条件。运用拉格朗日对偶分解技术,NUM问题被分布式求解。实验对比分析表明:在确保较低复杂度的前提下,该算法有效改善了分布式多跳网络资源分配的合理性,使其网络总体效用得到提升,降低了能耗。  相似文献   

17.
Heterogeneous networks (HetNets) composed of overlapped cells with different sizes are expected to improve the transmission performance of data service significantly. User equipments (UEs) in the overlapped area of multiple cells might be able to access various base stations (BSs) of the cells, resulting in various transmission performances due to cell heterogeneity. Hence, designing optimal cell selection scheme is of particular importance for it may affect user quality of service (QoS) and network performance significantly. In this paper, we jointly consider cell selection and transmit power allocation problem in a HetNet consisting of multiple cells. For a single UE case, we formulate the energy efficiency of the UE, and propose an energy efficient optimization scheme which selects the optimal cell corresponding to the maximum energy efficiency of the UE. The problem is then extended to multiple UEs case. To achieve joint performance optimization of all the UEs, we formulate an optimization problem with the objective of maximizing the sum energy efficiency of UEs subject to QoS and power constraints. The formulated nonlinear fractional optimization problem is equivalently transformed into two subproblems, i.e., power allocation subproblem of each UE-cell pair, and cell selection subproblem of UEs. The two subproblems are solved respectively through applying Lagrange dual method and Kuhn–Munkres (K-M) algorithm. Numerical results demonstrate the efficiency of the proposed algorithm.  相似文献   

18.
提出联合优化卫星通信系统中的功率和时隙资源的方法,以提高星上有限资源的使用能效。挖掘了功率和时隙资源在容量提升上的相互补充相互依存关系,考虑了多个地球站的信道条件和容量需求的差异性,建立了资源联合分配的状态组合模型,以适应各地球站的多资源利用模式。并以最大化能效为目标,设计了联合分配的迭代对偶优化(IDO)算法,以较低复杂度获得了最优联合分配方案。仿真分析表明,资源联合优化比非联合优化提高了能量利用效率,尤其在频率资源(载波数目)较少时优势更加明显。  相似文献   

19.
该文针对双层非正交多址系统(NOMA)中基于能量效率的资源优化问题,该文提出基于双边匹配的子信道匹配方法和基于斯坦科尔伯格(Stackelberg)博弈的功率分配算法。首先将资源优化问题分解成子信道匹配与功率分配两个子问题,在功率分配问题中,将宏基站与小型基站层视作斯坦科尔伯格博弈中的领导者与追随者。然后将非凸优化问题转换成易于求解的方式,分别得到宏基站和小型基站层的功率分配。最后通过斯坦科尔伯格博弈,得到系统的全局功率分配方案。仿真结果表明,该资源优化算法能有效地提升双层NOMA系统的能量效率。  相似文献   

20.
当使用所有天线进行无线数据传输时,大规模多输入多输出(Multiple-Input multiple-Output,MIMO)系统中的基站需要使用与天线数相同的射频链路,导致系统的实现复杂度增加,降低了系统的能效。针对能效降低的问题,提出了一种天线选择和功率分配的联合迭代优化算法。该算法在给定初始发送功率的条件下,随机生成一个天线集合作为内循环的初始值,内循环每次从余下的天线集合中选择一根具有最大能效的天线进行替换,得出最优天线集合,求出相应的最优发送功率,并以此作为下次外循环发送功率的初始值。仿真结果表明,所提算法在降低计算复杂度的前提下,几乎可以达到近似于最优穷举搜索算法的能效性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号