首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 409 毫秒
1.
全部利用线性啁啾光纤布拉格光栅(CBG)作色散补偿模块和在线通道滤波顺,在2500km超长距离的G.652光纤上实现10Ghps归零码(RZ)、载波抑制归零码(CSRZ)光信号的无电中继传输,并在2080km和2560km处分别对2种信号的传输性能进行了测试。CSRZ在上述2处的功率代价分别为~1dBm和~3dBm(BER-10^12,PRBS=10^23-1),RZ的功率代价分别为~3dBm和~5dBm,验证了在相同系统平台下CSRZ光信号比RZ光信号有更好的性能.  相似文献   

2.
A nonregenerative optical transmission experiment with a chromatic dispersion of more than 10000 ps/nm is reported. Externally intensity-modulated 2.4 Gb/s optical signals were transmitted over 710 km of nondispersion-shifted optical fiber using ten Er-doped fiber amplifiers with a total net optical gain of 125 dB. Although the total chromatic dispersion amounted to 12300 ps/nm, the power penalty observed was as small as 0.5 dB, and an error floor was not observed. The effect of transmitter phase noise associated with fiber chromatic dispersion was experimentally investigated  相似文献   

3.
We present a multichannel tunable dispersion compensator (TDC) based on multicavity all-pass etalons that is capable of operation at 40 Gb/s. The device has a tuning range of +200/-220 ps/nm with a group delay ripple < /spl plusmn/5 ps over a channel bandwidth of 80 GHz, an overall loss of < 5.2 dB, very low insertion loss ripple, and can operate on any channel on a 200-GHz grid over the C-band. In addition, we present system performance results at 40 Gb/s using NRZ, RZ, and CS-RZ modulation, compensating up to 45 km of nonzero dispersion shifted fiber (NZDSF). Our results show that this device introduces very little excess system penalty with signal frequency drifts of up to 20 GHz when operated near the center of its tuning range. For single channel experiments with fiber, the system penalty increase versus signal detuning is more significant, but can be reduced by dynamically optimizing the device dispersion during detuning. Finally, we demonstrate simultaneous compensation of 4 channels across the C-band over 25 km of NZDSF.  相似文献   

4.
We present a metal-organic-chemical-vapor-deposition-grown low-optical-insertion-loss InGaAsP/InP multiple-quantum-well electroabsorption modulator (EAM), suitable for both nonreturn-to-zero (NRZ) and return-to-zero (RZ) applications. The EAM exhibits a dynamic (RF) extinction ratio of 11.5 dB at 1550 nm for 3 Vp-p drive under 40-Gb/s modulation. The optical insertion loss of the modulator in the on-state is -5.2 dB at 1550 nm. In addition, the EAM also exhibits a 3-dB small-signal response (S21) of greater than 38 GHz, allowing it to be used in both 40-Gb/s NRZ and 10-Gb/s RZ applications. The dispersion penalty at 40 Gb/s is measured to be 1.2 dB over /spl plusmn/40 ps/nm of chromatic dispersion. Finally, we demonstrate 40-Gb/s transmission performance over 85 km and 700 km.  相似文献   

5.
By optimizing the fabrication process of the chirped optical fiber Bragg grating (CFBG), some key problems of CFBG are solved, such as fabrication repetition, temperature stability, group delay ripple (GDR), fluctuation of the reflection spectrum, polarization mode dispersion (PMD), interaction of cascaded CFBG, and so on. The CFBG we fabricated can attain a temperature coefficient less than 0.0005 nm/℃, and the smoothed GDR and the fluctuation of the reflection spectrum are smaller than 10ps and 0.5dB, respec-tively. The PMD of each CFBG is less than 1 ps and the dispersion of each grating is larger than -2600 ps/(nm·km). With dispersion compensated by the CFBGs we fabricated, a 13×10 Gbit/s 3100 km ultra long G.652 fiber transmission system is successfully imple-mented without electric regenerator. The bit error rate (BER) of the system is below 10-4 without forward error correction (FEC); when FEC is added, the BER is below 10-12. The power penalty of the carrier-suppressed return-to-zero (CSRZ) code transmission system is only 2.5 dB.  相似文献   

6.
光纤传输系统中基于相位预调制的信号整型   总被引:1,自引:0,他引:1  
利用相位预调制技术解决高速长距离光纤传输系统中面临的接收灵敏度降低和色散容限问题。通过在发射端对非归零(NRZ)的光信号进行比特同步相位预调制,使非归零码在传输过程中得到波形重整,演变为归零(RZ)的波形,从而提高眼图开启度。实验观测了普通非归零码和相位预调制的非归零码在不同相位调制深度和色散下的光谱、眼图和功率代价。10Gb/s的传输结果表明,链路色散绝对值小于1000ps/nm时,施加相位预调制的非归零信号功率代价小于1dB,比普通非归零信号具有更高的接收灵敏度和更低的色散功率代价。因此,基于相位预调制的信号整型技术可减轻系统对光信噪比和色散管理的要求,延长传输距离。  相似文献   

7.
40Gb/s光纤通信系统中不同码型传输特性的实验研究   总被引:8,自引:3,他引:8  
在高速光纤通信系统中码型的选择是决定系统传输质量和光谱效率的主要因素。码型的选择和信道速率、信道波长间隔、光放大器的选择、光放大器放置间隔、光纤的类型、色散管理策略等各种因素密切相关。分析了非归零码(NRZ)、归零码(RZ)和载波抑制归零码(CSRZ)码型的产生方式及特点。采用单信道和掺铒光纤放大器(EDFA)放大方式对三种码型进行了40Gb/s的100kmG.652光纤通信传输实验。比较了三种码型的系统传输持性、最佳入纤功率和不同入纤功率下的功率代价:载波抑制归零码最佳入纤功率为9dBm,功率代价小于非归零码和归零码。结果表明,在相同的色散补偿条件下,载波抑制归零码比归零码和非归零码有更优的非线性容忍度。  相似文献   

8.
通过恒包络调制提高相干光OFDM系统的光纤非线性容限   总被引:1,自引:1,他引:0  
相干光正交频分复用(CO-OFDM)对光纤链路中 的色度色散(CD)和偏振模色散(PMD)具有较强的容忍性,但 是OFDM信号高峰均功率比(PAPR)的特点使其对光纤非线性效应 非常敏感,严重影响了系统传输性能。 本文提出了基于恒包络(CE)调制的方法使得系统中光信号PAPR降低为0dB,从而提高了CO-OFDM系统的非 线性传输性能。仿真结果表明,子载波采用16QAM调制的40Gbit/s单信道CE调制CO -OFDM系统,在经800km无色散补偿、欠色散补偿和周期全色散补偿 标准单模光纤(SSMF)链 路传输后,虽然较传统CO-OFDM存在约1.8dB的代价,但是系统最大 发射光功率分别提高 了6.2、9.3dB。并且,将本文方案应 用 到CO-OFDM和10Gbit/s NRZ-OOK混合传输WDM系统中,信道最大发 射光功率仍获得了5.2dB的提高。因此,本文提出的CE调制方法能有 效地提高CO-OFDM系统在不同传输环境中的光纤非线性容限。  相似文献   

9.
We propose effective polarization-mode dispersion (PMD) and chromatic dispersion (CD) compensation configuration for practical use in the field, taking into consideration the system cost and the field condition such as the CD changes due to fiber temperature dependence or transmission route change, and rapidly fluctuate state of polarization of the signal lightwave. Our configuration combines electric dispersion compensators (EDCs) with fixed taps in each channel with a multichannel tunable optical dispersion compensator (T-ODC) that can simultaneously compensate all channels' accumulated CD. We demonstrate widely extended $L$-band 43-Gb/s-based wavelength-division-multiplexing transmission over 450 km using our dispersion compensation configuration, and obtain effectiveness that the PMD penalty is suppressed by 2 dB at a differential group delay of 33 ps by using the EDC and that the CD penalty is improved by about 2 dB at the accumulated CD change of $+{/}-$ 30 ps/nm by using T-ODC and EDC.   相似文献   

10.
Nonreturn-to-zero (NRZ) and return-to-zero (RZ) signal formats are experimentally and numerically compared for single-channel long-distance transmission in an in-line amplifier system with dispersion management providing average zero dispersion and local nonzero dispersion at an interval equal to the in-line amplifier spacing. Among a 20-ps RZ signal, a 40-ps RZ signal, and an NRZ signal transmitted in 10 Gb/s straight-line experiments, the last signal achieves the longest transmission distance of 6000 km while the others are limited to 4400 km. Numerical simulations explain these results well and show that, along with linear amplified spontaneous emission (ASE) accumulation, signal waveform distortion due to the combined effect of higher order group-velocity dispersion (GVD) and self-phase modulation (SPM) dominates the performance. Nonlinear optical noise enhancement is not obvious because of the fiber dispersion arrangement. Signals with large pulse widths are less affected by the combined effect, while small-width signals yield superior initial signal-to-noise ratio (SNR) as determined by optical noise. A detailed simulation indicates that a pulse width of about 60 ps is optimum for long distance transmission under the fiber dispersion arranged in this paper  相似文献   

11.
A nonlinear model for a travelling-wave semiconductor optical amplifier has been used to determine eye closure degradations for 2.4 and 10 Gb/s NRZ/RZ lightwave systems due to gain saturation effects in the optical amplifier. At 10 Gb/s, with a carrier lifetime of 300 ps, the results indicate that the penalty is less than 1 dB for both NRZ and RZ systems provided that the ratio of the input power (Pin ) to the saturation output power (Psat) is less than -17 dB. The NRZ system penalty is slightly larger than the RZ penalty when Pin/Psat is larger than -17 dB. For example, with Pin/Psat=-10 dB, the NRZ system penalty is about 2.8 dB versus 2 dB for the RZ system. The system penalty at 2.4 Gb/s is slightly less than that at 10 Gb/s. At P in/Psat=-10 dB, the NRZ system penalty is about 2.5 dB versus 1.5 dB for RZ  相似文献   

12.
The prechirp effect on 10-Gb/s transmission in the 1000-nm band over photonic crystal fiber (PCF) was investigated both experimentally and theoretically. We performed transmission experiments using a 24-km-long PCF whose optical loss and chromatic dispersion were 0.94 dB/km and$-$20 ps/nm/km at 1064 nm, respectively. We confirmed an improvement in the bit-error-rate performance after the transmission, namely a “negative power penalty” of about$-$0.5 dB. Our experimental result and theoretical estimation revealed that the signal degradation induced by the chromatic dispersion can be effectively suppressed by employing the prechirp technique with a conventional$Z$-cut lithium niobate modulator.  相似文献   

13.
The effect of phase noises from a laser and an oscillator on radio-over-fiber (RoF) systems is analyzed and discussed with a power spectral density (PSD) function. A Mach-Zehnder modulator (MZM) and a phase shifter are employed to externally generate an optical single sideband (OSSB) signal since the OSSB signal is tolerable for power degradation due to a chromatic fiber-dispersion effect. It is shown that a carrier-to-noise ratio (CNR) penalty is deeply related to the bandwidth of a receiver filter and the phase noise from a radio frequency (RF) signal oscillator rather than that from a laser in a small differential-delay environment and a direct detection scheme. The CNR penalty due to the increment of the laser linewidth from 10 to 624 MHz is almost 1.1 dB, while the increase of the RF-oscillator linewidth from 1 to 100 Hz results in about a 20-dB penalty at a 30-GHz 10-km transmission in a standard single-mode fiber (SSMF) with a fiber chromatic dispersion of 17 ps/km/spl middot/nm.  相似文献   

14.
Group-velocity dispersion (GVD) compensation in in-line amplifier systems is evaluated from the viewpoint of improving the transmission distance. The nonlinear Schrodinger equation, which simulates signal propagation in optical fibers, is numerically evaluated to clarify the optimum configuration for GVD compensation. It is shown that the optimum amount of GVD compensation is about 100% of the GVD experienced by the transmitted signal. The optimum compensation interval is found to be a function of the bit rate, signal power, and dispersion parameter. For dispersion parameter values ranging from about -0.1 ps/nm/km to -10 ps/nm/km, and an amplifier noise figure of about 6 dB, the optimum compensation configuration can eliminate the GVD from in-line amplifier systems, thus improving transmission distances to those limited by self-phase modulation and higher-order GVD  相似文献   

15.
一种改进的载波抑制调制光毫米波信号的产生方案   总被引:5,自引:5,他引:0  
为了克服光纤无线(ROF)系统中色散对光载波抑制(OCS)调制光毫米波信号传输的影响,提出一种改进的OCS调制方案。使用双驱动马赫-曾德尔调制器(MZM),通过调整两路输入射频信号相位、基带信号增益和直流偏置电压将2.5Gbit/s数据信号仅调制到(OCS)信号的一个边带上传输。理论分析表明,与传统OCS调制光毫米波信号产生方案相比,本文方案解决了色度色散引起的码元走离问题,大大增加了传输距离。仿真实验结果表明,经过110km光纤传输后信号的眼图仍然十分清晰,在BER=10-10条件下,信号经过20、40和60km光纤传输后的功率代价分别为0.78、1.7和1.9dB。  相似文献   

16.
We experimentally demonstrate dynamic dispersion compensation using a novel nonlinearly chirped fiber Bragg grating in a 10-Gb/s system. A single piezoelectric transducer continuously tunes the induced dispersion from 300 to 1000 ps/nm. The system achieves a bit-error rate=10-9 after both 50 and 104 km of single-mode fiber by dynamically tuning the dispersion of the grating between 500 and 1000 ps/nm, respectively. The power penalty after 104 km is reduced from 3.5 to <1 dB  相似文献   

17.
一种基于OPM和FBG滤波器的新型双工ROF系统   总被引:1,自引:1,他引:0  
提出了一种采用光相位调制器(OPM)和光纤布 拉格光栅(FBG)滤波器实现的双向光纤无线通信(ROF)系统。在中心站,系统采用OPM和FBG滤波器产生抑制一阶边带的多边带光信号 ,而2.5Gbit/s 的下行链路信号只调制在中心光载波上同时经过光纤进行传输。在基站,未被调制的边带信 号用来重新调 制上行链路信号。建立了产生光载毫米波的理论模型,分析了光纤色散导致的相位影响,并 通过仿真实验 验证了系统的可行性。结果显示,经过60km光纤传输后,上、下行 链路信号的眼图都清晰可见,上行链 路功率代价小于0.2dB,下行链路功率代价小于1.8dB,系统具有较好的抗色散能力。  相似文献   

18.
A directly modulated 1.519-μm distributed-feedback laser signal was transmitted over 233 km of single-mode fiber consisting of dispersion shifted fiber and conventional step-index fiber to minimize the dispersion penalty. The power penalty after the transmission was 0.25 dB. The results show the effectiveness of an optical amplifier repeater system for high-speed long-haul fiber optic transmission  相似文献   

19.
一种克服色度色散影响的四倍频光毫米波信号产生方法   总被引:3,自引:0,他引:3  
提出一种克服色度色散影响的四倍频光毫米波信号产生方法。该方法使用一个双驱动马赫曾德尔调制器,通过调整上、下两路射频信号的相位差、直流偏置点、调制系数以及基带信号增益,将数据信号仅调制到四倍频光毫米波信号的一个2阶边带上传输,解决了色度色散引起的码元走离问题,有效增加了传输距离。理论分析和仿真实验结果表明,信号在光纤中传输120 km后眼图仍然十分清晰,经过60 km传输后的功率代价约为0.45 dB。另外,基于频率再用技术,没有调制数据的另一个2阶边带信号还可以作为全双工光纤无线通信(RoF)系统的上行链路光载波,简化了基站配置。仿真实验结果表明,双向2.5 Gbit/s数据信号在光纤中传输40 km后,功率代价小于0.6 dB。  相似文献   

20.
A system experiment is reported in which polarisation mode dispersion (PMD) and chromatic dispersion (CD) compensation was achieved using an SiGe IC linear equaliser, with a transmission rate of 100 bit/s over 95 km of standard single-mode fibre (DL=1600 ps/nm). Full equalisation was obtained, with a differential group delay (DGD) of <65 ps and a penalty reduction to 3.4 dB for DGD=100 ps  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号