首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
渐近波形估计技术在三维电磁散射问题快速分析中的应用   总被引:13,自引:0,他引:13  
孙玉发  徐善驾 《电子学报》2002,30(6):794-796
本文将渐近波形估计技术应用到矩量法中,计算了三维理想导体目标的宽带雷达散射截面(RCS)和单站RCS方向图.用矩量法求解电场积分方程,得到给定频率点、给定方向入射波照射下的导体表面电流密度,应用渐近波形估计技术分别得到频带内任意频率点以及任意角度入射波照射下的导体表面电流密度,进而计算出宽带RCS和单站RCS方向图.计算结果表明渐近波形估计技术与矩量法结合可以逼近矩量法逐点计算的结果,且计算效率大大提高.  相似文献   

2.
渐近波形估计技术用于介质柱宽角度RCS的计算   总被引:10,自引:7,他引:3  
基于渐近波开估计(AWE)技术和矩量法(MOM)快速预测任意形状非均匀介质柱体的单站雷达散射截面RCS方向图,采用矩量法求解介质柱的电场积分方程,得到介质柱在某一给定方向入射波照射下的极化电流,然后利用AWE技术将任一角度入射波照射下的极化给定角度附近展开成Taylor级数,通过Pade逼近将Taylor级数转化为有理函数,由此可获得介质柱在任一角度入射波照射下的极化电流,进而计算出RCS方向图。计算结果表明AWE完全能逼近MOM精确计算的曲线,同时可加快计算速度。  相似文献   

3.
本文基于Cauchy技术和矩量法(MOM)快速预测任意截面形状、非均匀介质柱体的单站雷达散射截面(RCS)。首先采用MOM求解介质柱的电场积分方程,得到介质柱在某一给定方向入射波照射下的各低阶矩量的极化电流,然后利用Cauchy技术获得用有理函数模型表示的、在任意角度入射波照射下的极化电流,进而计算出RCS的宽角响应。计算结果表明,Cauchy技术守全能逼近MOM精确计算的曲线,同时可大大加快计算速度。  相似文献   

4.
目标雷达散射截面积(Radar Cross Section, RCS)计算在隐身设计、电子对抗、目标探测、识别和成像等方面具有重要的研究价值,是目标电磁散射特性的重点研究方向。针对复杂目标RCS估计问题,基于属性散射中心模型的单一方法在估计大角度范围的目标RCS时会产生较大误差,而物理光学方法需要在每个观察角度对目标表面的面元进行遮挡判别才能准确得到目标RCS,计算量大。因此,本文提出一种联合属性散射中心模型和物理光学的处理方法,在部分观察角度通过物理光学方法分析确定目标的属性参数集,再通过属性散射中心模型分析快速估计任意观察角度、不同频率下的目标RCS,获得在大角度范围的结果更加准确、计算量更小。最后采用FEKO软件仿真验证了所提方法的有效性。  相似文献   

5.
太赫兹雷达散射特性的研究对于目标识别、跟踪以及截获有重要意义.设计了0.22 THz频率步进雷达散射截面(Radar Cross section,RCS)测量系统,提出了针对频率步进太赫兹雷达信号体制下,角反射器RCS的提取方法.采用实验与仿真相结合的方式,得到了单个角反射器和角反射器组在4°范围内的太赫兹雷达散射截面.结果表明,角反射器类目标的RCS实验测量结果与理论计算结果在误差范围内一致性较好,为进一步精确测量目标在太赫兹波段的散射特性奠定了研究基础.  相似文献   

6.
针对雷达探测临近空间高超声速目标模拟试验中的雷达散射截面(radar cross section,RCS)逼真模拟问题,提出了一种适用于临近空间高超声速飞行器等离子体鞘套下目标RCS衰减模拟方法.首先利用不同高度、不同速度对应的等离子体频率和电子碰撞频率的相关数据,拟合得出不同速度、不同高度对应的等离子体频率和电子碰撞频率关系表;其次,实时查表得到给定雷达频率情况下不同目标高度与速度对应的等离子体频率和电子碰撞频率,建立目标等离子体包覆模型和电磁波传输模型,计算雷达电磁波的衰减系数和反射系数;最后,通过雷达电磁波的衰减系数和反射系数模拟出目标RCS衰减.通过与有关实测数据比对,证明了方法的合理性.仿真分析可知,利用高频率雷达探测临近空间高超声速飞行器将更容易得到连续的航迹,产生雷达"黑障"的时间更短.  相似文献   

7.
对亚密湍流等离子体尾迹的雷达散射特性进行了分析、研究和计算。讨论了圆柱形等离子体尾迹径向厚度、雷达波入射频率和入射角等因素对雷达散射截面的影响。尾迹中散射场的计算采用矩阵法求解,用一阶畸变波Born近似完成亚密湍流等离子体尾迹雷达散射截面积(RCS)的计算。分析和计算结果表明,雷达波入射频率和入射角、尾迹的径向厚度对RCS值影响较大,并且计算所得的尾迹雷达散射截面方向图可为再入体的雷达识别和隐身提供帮助。  相似文献   

8.
研究电大复杂目标的雷达散射截面(RCS)计算及雷达回波模拟仿真技术具有重要意义。基于物理光学法(PO)和弹跳射线法(SBR)设计了一款仿真软件,综合考虑海杂波和噪声的作用,计算舰船动态RCS及雷达回波。针对3种形状、大小不同的船模计算RCS值并仿真分析这些船模在不同场景下的雷达回波信号。仿真结果表明,相比设定RCS均值的方法,动态RCS计算方法更适合在复杂的海面情况中识别目标特性并提取有效信息。研究结果可为雷达系统仿真中的目标识别及电磁隐身技术提供可靠计算方法。  相似文献   

9.
基于SBR法研究发动机进气道的RCS   总被引:1,自引:0,他引:1       下载免费PDF全文
采用弹跳线法(SBR)对发动机进气道的雷达散射截面(RCS)进行了分析计算。通过光学射线跟踪、场强跟踪及口径积分方法,研究了任意截面和形状的管道电磁散射特性,比较了一实际进气道的计算与实验结果,验证了此方法的有效性,从而解决了工程急需。  相似文献   

10.
基于NURBS建模和渐近物理光学的RCS计算研究   总被引:2,自引:0,他引:2  
阐述了对于非均匀有理B样条(NURBS)技术和渐近物理光学来计算电大尺寸目标单雷达散射截面(RCS)的方法,在RCS的计算中是将散体表面的物理光学积分通过参数变换为NURBS参数域上的二重积分,利用驻定相位法得出组合NURBS表面的散射场,并与其他的方法进行比较,具有很好的一致性。  相似文献   

11.
应用渐近波形估计技术快速计算宽带雷达散射截面   总被引:4,自引:0,他引:4  
将渐近波形估计技术应用到矩量法中,计算了任意形状二维理想导体目标的宽带雷达散射截面.计算中使用矩量法和奇异值分解技术求解电场积分方程,得到一展开频率点的表面电流密度,通过Padé近似求出给定频带内任意频率点的表面电流密度分布,进而计算出散射场和雷达散射截面.奇异值分解技术的使用消除了电场积分方程的内谐振问题.对数值计算结果与矩量法逐点求解的结果进行了比较,两者吻合良好,且计算效率提高了约一个数量级.  相似文献   

12.
The method of moments (MoM) in conjunction with the asymptotic waveform evaluation (AWE) technique is applied to obtain the radar cross section (RCS) of an arbitrarily shaped three-dimensional (3-D) perfect electric conductor (PEC) body over a frequency band. The electric field integral equation (EFIE) is solved using the MoM to obtain the equivalent surface current on the PEC body. In the AWE technique, the equivalent surface current is expanded in a Taylor's series around a frequency in the desired frequency band. The Taylor series coefficients are then matched via the Pade approximation to a rational function. Using the rational function, the surface current is obtained at any frequency within the frequency range, which is in turn used to calculate the RCS of the 3-D PEC body. A rational function approximation is also obtained using the model-based parameter estimation (MBPE) method and compared with the Pade approximation. Numerical results for a square plate, a cube, and a sphere are presented over a frequency bandwidth. Good agreement between the AWE and the exact solution over the bandwidth is observed  相似文献   

13.
采用渐近波形估计技术(AWE)和预处理技术求解导体目标的宽带雷达散射截面(RCS)。应用矩量法求解导体目标的电场积分方程,通过构造预条件算子,使由矩量法得到的阻抗矩阵稀疏化,从而计算导体表面电流时变得简便,再结合渐近波形估计(AWE)技术计算导体目标的宽带雷达散射截面(RCS)。实例结果表明,该方法在计算电大导体目标时具有较高的计算效率和很好的精度。  相似文献   

14.
为提高合成孔径雷达(SAR)图像仿真效果,针对SAR图像中舰船目标雷达散射截面(RCS)计算的精度和效率问题,在利用几何建模方法构建三维舰船模型的基础上,采用并行多层快速多极子算法(MLFMA)计算了舰船目标RCS并分析了该算法的并行加速比。仿真实验表明,并行MLFMA算法适用于高频范围内较大尺寸舰船目标RCS的计算,比物理光学法(PO)和物理光学与矩量混合算法(PO—MOM)具有更高的计算精度且并行方案能明显提高求解目标RCS的效率。  相似文献   

15.
三维散射体宽角度RCS的快速算法   总被引:5,自引:2,他引:3  
汪杰  洪伟 《电波科学学报》2001,16(2):241-244
基于渐近波形估计(AWE)技术和区域分裂法(DDM)快速预测有限长三维柱体的单站RCS方向图。首先采用区域分裂法结合频域有限差分(FDFD-DDM)把柱体表面的等效电流和磁流在给定的某一角度展开成Taylor级数,然后通过Pade逼近将Taylor级数转化为有理函数,由此可获得柱体在任一角度入射波照射下的表面等效电流和磁波,进而计算出单站RCS方向图。计算结果表明采用AWE技术得到的结果和直接采用FDFD-DDM法得到的结果吻合较好,同时计算效率得到了很大的提高。  相似文献   

16.
本文基于渐近波形估计(AWE)技术和矩量法(MOM)快速预测无限大导体平面上任意形状凹槽的散射场方向性函数。用矩量法求解得到给定方向入射波照射下凹槽口径磁流,用AWE技术得到任意方向人射波照射下口径磁流,进而计算出散射场的方向性函数。计算结果表明AWE能逼近MOM计算结果,同时在计算速度上可提高几十倍。  相似文献   

17.
该文旨在利用渐近波形估计(AWE)技术来研究双负媒质(DNG)的电磁散射特性。文章首先从双负媒质(DNG)的本构关系出发,推导出DNG的PMCHWT方程,从而解出单频率入射波下的电流和雷达散射截面(RCS);通过对阻抗矩阵元素的处理,实现了阻抗元素高阶导数的求解,成功的将AWE技术应用于DNG宽频电磁计算领域。计算实例表明:AWE计算的结果能很好地逼近精确解,同时大大提高了计算效率。  相似文献   

18.
弹头形状对导弹RCS影响的分析   总被引:1,自引:1,他引:0  
对导弹的结构进行简化,建立了导弹的电磁散射模型,通过综合运用物理光学法(PO)、等效电磁流法(MEC)、几何光学法(GO)等高频方法计算了导弹模型各散射中心的雷达散射截面积(RCS),并考虑目标各部分散射场间的相对相位关系,计算了带橄榄型弹头导弹的整体RCS,其结果与参考文献的实测结果吻合较好,这说明该文的分析方法是正确的、有效的,结果可满足工程预估的需要。在此基础上,分别计算了不同极化方式下带椭球型和半球型弹头导弹的RCS,结合RCS曲线分析了弹头形状对导弹电磁散射特性的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号