首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
This study presents newly developed yellow‐colored organic electro‐optic crystals to provide high terahertz (THz) wave generation efficiency. Compared with currently existing red‐ or orange‐colored electro‐optic crystals, which are used for most benchmark organic THz sources, yellow‐colored crystals have additional superior advantages for THz wave generation, e.g., higher transparency in the visible wavelength range with accompanying different phase‐matching possibilities. The new yellow‐colored crystals consist of a highly nonlinear optical 4‐(4‐hydroxystyryl)‐1‐methylpyridinium (OHP) cation, with a relatively short wavelength of maximal absorption at 390 nm in solution, and various halogen‐substituted benzenesulfonate anions, with strong secondary‐bonding ability. OHP 4‐chlorobenzenesulfonate (OHP‐CBS) crystals exhibit large off‐resonant macroscopic optical nonlinearity and high transparency, with a cut‐off wavelength for solid‐state absorption near 490 nm. OHP‐CBS crystals provide excellent THz wave generation characteristics based on optical rectification. A 0.53 mm thick OHP‐CBS crystal delivers ≈27 times higher optical‐to‐THz conversion efficiency and a much broader spectrum bandwidth compared with the standard 1.0 mm thick ZnTe at 1300 nm pumping. Particularly, compared with a benchmark organic quinolinium crystal with a similar thickness of 0.55 mm, OHP‐CBS crystals exhibit 1.7 times higher optical‐to‐THz conversion efficiency, and show a significantly different THz spectral shape.  相似文献   

2.
Intense table‐top terahertz (THz) sources, which have progressed tremendously in the last decade, are becoming more important for advanced THz science to study light–matter interactions and subsequent applications. Nonlinear optical organic crystals exhibit great potential for intense broadband THz wave generation due to their large nonlinearities and advantageous phase‐matching characteristics. However, the phonon‐induced absorption of most organic crystals in the THz region leads to undesired modulation of the spectrum and limits the THz output efficiency. To overcome such drawbacks, phonon‐mode engineering by modification of molecular structures is suggested, but intrinsic limitations still remain. Here, an efficient alternative approach has been recently proposed for generating intense broadband THz waves based on a tandem configuration that combines two complementary nonlinear organic crystals. Such configuration compensates for the spectral gap of the generated THz waves mainly caused by phonon absorption and additionally enhances the optical‐to‐THz conversion efficiency. The proposed organic tandem generator indicates a substantial enhancement of the peak‐to‐peak THz electric field due to effective spectral filling at phonon absorption gaps. As a result, such tandem configuration provides a versatile platform to generate gapless broadband THz spectra with suppressed phonon absorption and contributes to advancing the development of intense broadband coherent THz sources.  相似文献   

3.
A novel highly efficient ionic electro‐optic quinolinium single crystals for THz wave applications is reported. Acentric quinolinium derivatives, HMQ‐T (2‐(4‐hydroxy‐3‐methoxystyryl)‐1‐methylquinolinium 4‐methylbenzenesulfonate) and HMQ‐MBS (2‐(4‐hydroxy‐3‐methoxystyryl)‐1‐methylquinolinium 4‐methoxybenzenesulfonate) exhibit high order parameters cos3θp = 0.92 and cos3θp = 1.0, respectively, as well as a large macroscopic optical nonlinearity, which is in the range of the benchmark stilbazolium DAST (N,N‐dimethylamino‐N’‐methylstilbazolium 4‐methylbenzenesulfonate) and phenolic polyene OH1 (2‐(3‐(4‐hydroxystyryl)‐5,5‐dimethylcyclohex‐2‐enylidene)malononitrile) crystals. As‐grown unpolished bulk HMQ‐T crystals with a side length of about 6 mm and thickness of 0.56 mm exhibit 3.1 times higher THz generation efficiency than 0.37 mm thick OH1 crystals and about 8.4 times higher than 1 mm thick inorganic standard ZnTe crystals at the near‐infrared fundamental wavelength of 836 nm. Therefore, HMQ crystals with high order parameter obviously have a very high potential for high power THz‐wave generation and its applications.  相似文献   

4.
We investigate a configurationally locked polyene (CLP) crystal 2‐(3‐(4‐hydroxystyryl)‐5,5‐dimethylcyclohex‐2‐enylidene)malononitrile (OH1) containing a phenolic electron donor, which also acts as a hydrogen bond donor. The OH1 crystals with orthorhombic space group Pna21 (point group mm2) exhibit large second‐order nonlinear optical figures of merit, high thermal stability and very favorable crystal growth characteristics. Higher solubility in methanol and a larger temperature difference between the melting temperature and the decomposition temperature of OH1 compared to analogous CLP crystals, are of advantage for solution and melt crystal growth, respectively. Acentric bulk OH1 crystals of large sizes with side lengths of up to 1 cm with excellent optical quality have been successfully grown from methanol solution. The microscopic and macroscopic nonlinearities of the OH1 crystals are investigated theoretically and experimentally. The OH1 crystals exhibit a large macroscopic nonlinearity with four times larger powder second harmonic generation efficiency than that of analogous CLP crystals containing dimethylamino electron donor. A very high potential of OH1 crystals for broadband THz wave emitters in the full frequency range of 0.1–3 THz by optical rectification of 160 fs pulses has been demonstrated.  相似文献   

5.
Molecular nonlinear optical (NLO) crystals feature important advantages compared to inorganic counterparts, such as low dielectric constants, ultrafast response times, and large electro‐optic coefficients. Conjugated push–pull chromophores connecting electron‐donating with accepting groups are often employed in the design of these crystals. However, associated large molecular dipole moments induce antiparallel or centrosymmetric conformations in the solid‐state, which leads to NLO inactivity. The cation–anion hydrogen bond interactions of a hydroxy‐piperidino electron donor group are combined with increased van der Waals volume effects induced by an ethyl modification of the electron‐accepting moiety. This produces non‐centrosymmetric packing in the organic salt EHPSI‐4NBS ((E)‐1‐ethyl‐2‐(4‐(4‐(hydroxymethyl)piperidin‐1‐yl)styryl)‐3,3‐dimethyl‐3H‐indol‐1‐ium 4‐nitrobenzenesulfonate). Converting a methyl group into ethyl changes the packing symmetry in the molecular crystal to switch on NLO activity. This behavior is attributed to the increased size of the ethyl group, which pushes apart the van der Waals contacts of the cation that lead to centrosymmetric packing in the methyl derivative. To test the NLO properties of EHPSI‐4NBS, THz generation experiments are performed at 1200 nm pump wavelength. Spectral amplitude similar to DAST ((E)‐4‐(4‐(dimethylamino)styryl)‐1‐methylpyridin‐1‐ium tosylate) crystal is observed with generation profile from 0 to 3.8 THz.  相似文献   

6.
利用移动加热区方法(THM)生长了不同Cd组分的Hg1-xCdxTe晶体,通过傅立叶光谱仪和太赫兹时域光谱系统,研究了不同Cd组分Hg1-xCdxTe晶体在红外波段和太赫兹波段的透射光谱.当Cd组分小于0.279时,Hg1-xCdxTe材料在0.2~1.5 THz波段透过率接近0.在0.9 THz附近观察到Hg1-xC...  相似文献   

7.
Characterisation of materials often requires the use of a substrate to support the sample being investigated. For optical characterisation at terahertz frequencies, quartz is commonly used owing to its high transmission and low absorption at these frequencies. Knowledge of the complex refractive index of quartz is required for analysis of time-domain terahertz spectroscopy and optical pump terahertz probe spectroscopy for samples on a quartz substrate. Here, we present the refractive index and extinction coefficient for α-quartz between 0.5 THz and 5.5 THz (17–183 cm??1) taken at 10, 40, 80, 120, 160, 200 and 300 K. Quartz shows excellent transmission and is thus an ideal optical substrate over the THz band, apart from the region 3.9 ± 0.1 THz owing to a spectral feature originating from the lowest energy optical phonon modes. We also present the experimentally measured polariton dispersion of α-quartz over this frequency range.  相似文献   

8.
N-(pyridin-2-yl) benzamide (Ph2AP)-based organic molecules with prominent terahertz (THz) signatures (less than 5 THz) have been synthesized. The THz resonances are tuned by substituting the most electronegative atom, fluorine, at ortho (2F-Ph2AP), meta (3F-Ph2AP), and para (4F-Ph2AP) positions in a Ph2AP molecule. Substitution of fluorine helps in varying the charge distribution of the atoms forming hydrogen bond and hence strength of the hydrogen bond is varied which helps in tuning the THz resonances. The tuning of lower THz resonances of 2F-Ph2AP, 3F-Ph2AP, and 4F-Ph2AP has been explained in terms of compliance constant (relaxed force constant). Four-molecule cluster simulations have been carried out using Gaussian09 software to calculate the compliance constant of the hydrogen bonds. Crystal structure simulations of the above molecules using CRYSTAL14 software have been carried out to understand the origin of THz resonances. It has been observed that THz resonances are shifted to higher frequencies with stronger hydrogen bonds. The study shows that 3F-Ph2AP and 4F-Ph2AP have higher hydrogen bond strength and hence the THz resonances originating due to stretching of intermolecular hydrogen bonds have been shifted to higher frequencies compared to 2F-Ph2AP. The methodology presented here will help in designing novel organic molecules by substituting various electronegative atoms in order to achieve prominent THz resonances.  相似文献   

9.
We present new stilbazolium salt DSTMS (4‐N,N‐dimethylamino‐4′‐N′‐methyl‐stilbazolium 2,4,6‐trimethylbenzenesulfonate) with both high second‐order nonlinear optical properties and very favorable crystal growth characteristics. We are able to obtain very large area bulk single crystals of more than 3 × 3 × 0.2 cm3 with a high optical quality without using seed crystals by using low‐temperature solution growth. We also demonstrate the growth of single crystalline thin films of DSTMS with an area of up to 6 × 5 mm2 and a thickness between 5–30 μm. Nonlinear optical measurements reveal that DSTMS possesses large nonlinear optical susceptibilities with χ111(2) = (430 ± 40) pm V–1 at 1.9 μm. Highly efficient generation of broadband THz waves with THz electric field strengths of more than 4 kV cm–1 using 160 fs laser pump pulses at a wavelength λ = 1.45 μm and DSTMS crystals has been demonstrated.  相似文献   

10.
We report the measurement of the terahertz (THz) spectra of 4-aminobenzoic acid by using Fourier transform infrared (FTIR) spectroscopy in the 1.5–19.5 THz. Low frequency intermolecular (or phonon) modes between 0.3 and 2.4 THz were also investigated via THz time-domain spectroscopy. Structure and vibrational frequencies of the sample were calculated through density functional theory(DFT). The calculated results are in agreement with the experimental data. Moreover, we have interpreted observed vibrational frequencies using DFT. Two intermolecular or phonon modes were identified at 1.54 and 2.19 THz.  相似文献   

11.
OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.  相似文献   

12.
利用偶极天线LT-GaAs发射的太赫兹时域光谱(THz-TDS)研究单晶氧化锌、未掺杂和Mg掺杂的ZnO纳米粉末(粒子)在室温下的太赫兹光谱特性。在0.2~2 THz频率范围内研究了样品的功率吸收和折射率。结果发现,镁掺杂提高了样品材料的吸收效率,同时降低了氧化锌材料的折射率。相比较氧化锌单晶,未掺杂和Mg掺杂氧化锌纳米颗粒的太赫兹介电性质呈现类似的行为,该结果与横向光学E1(TO)声子模式有关。  相似文献   

13.
Nonlinear optical terahertz wave generation is a promising method for realizing a practical source with wide frequency range and high peak power. Unfortunately, many nonlinear crystals have a strong absorption in the terahertz frequency region. This limits efficient and widely tunable terahertz wave generation. The Cherenkov phase-matching method is one of the most promising techniques for overcoming these problems. We propose a prism-coupled Cherenkov phase-matching method, in which a prism with a suitable refractive index at terahertz frequencies is coupled to a nonlinear crystal. We demonstrate prism-coupled Cherenkov phase-matching terahertz generation using the DAST and LiNbO3 crystals. With a DAST crystal, we obtain a spectral flat tunability up to 10 THz by difference frequency generation. With a LiNbO3 crystal, we observe a spectral flat broadband terahertz pulse generation up to 5 THz pumped by a femto second fiber laser. The obtained temporal waveform is an ideal half cycle pulse suitable for reflection terahertz tomography.  相似文献   

14.
传统的光学差频产生的太赫兹辐射转换效率低,不能获得高功率太赫兹辐射。本文对周期极化GaAs晶体中差频产生太赫兹辐射进行了理论计算,通过温度调谐实现了周期极化GaAs晶体中差频获得可调谐太赫兹波的输出。为了提高差频过程的增益和量子效率,在准相位匹配基础上引进了级联差频机理,并对最佳晶体长度和最佳泵浦频率进行了计算。结果表明,利用周期极化的GaAs晶体可以获得更高能量更高效率的太赫兹波辐射。  相似文献   

15.
研究了DAST晶体的有效二阶非线性系数和太赫兹发射性能。实验以DAST-甲醇溶液的亚稳区范围为依据,采用溶液降温法进行DAST的生长。实验发现,降温速率越快,晶体的生长速度越快,但晶体易发生多晶转变;在晶体生长后期,采用较慢的降温速率,有利于晶体厚度的增加。经磨抛后的晶体表面粗糙度能够达到光学测试等级(微米级)要求。经测试,DAST晶片有效二阶非线性系数平均值为16.58 pm/V,实现了频率范围0.84~10 THz的太赫兹波发射,并在2.72 THz处具有最大发射强度。  相似文献   

16.
Terahertz time‐domain spectroscopy has been used to study the optical and dielectric properties of three chalcogenide glasses: Ge30As8Ga2Se60, Ge35Ga5Se60, and Ge10As20S70. The absorption coefficients α(ν), complex refractive index n(ν), and complex dielectric constants ?(ν) were measured in a frequency range from 0.3 THz to 1.5 THz. The measured real refractive indices were fitted using a Sellmeier equation. The results show that the Sellmeier equation fits well with the data throughout the frequency range and imply that the phonon modes of glasses vary with the glass compositions. The theory of far‐infrared absorption in amorphous materials is used to analyze the results and to understand the differences in THz absorption among the sample glasses.  相似文献   

17.
王翠玲  徐世林 《红外》2013,34(11):31-36
基于腔相位匹配的方法,研究了GaAs微片状晶体构成的光学微腔光参量振荡产生太赫兹波的条件与参数设计.计算了腔相位匹配下GaAs晶体的最优化腔长,通过调节GaAs晶体的温度研究了太赫兹波的输出情况,模拟了不同波长下最低的能量阈值.结果表明,在完全相位匹配很难实现的情况下,采用腔相位匹配能很容易地实现大范围的太赫兹波调谐输出.结果为小型化光学太赫兹源的实验与理论研究提供了参考.  相似文献   

18.
以一类常用的抗生素-青霉素类抗生素作为研究对象,选取4 种具有代表性的药品磺苄西林、舒他西林、美洛西林、替卡西林,基于太赫兹时域光谱(THz-TDS)技术,进行实验研究。通过光谱实验及理论分析,获取药品的太赫兹时域光谱,结合傅里叶变换,获得频域光谱及太赫兹吸收系数曲线。结果表明,4 种药品在0.40~1.60 THz 波段存在明显不同的吸收特征。因此,太赫兹光谱技术十分适合检测抗生素这种化学结构有微小不同的药品,并且可以清晰通过吸收峰的位置分辨出抗生素药类的种类。为国家食品药品监督管理提供一种新的可靠的检测技术,且可以以数据库的形式为药品的鉴定提供标准。  相似文献   

19.
Photonic heterocrystals are prepared by sandwiching films of self‐assembled opal and force‐assembled Langmuir–Blodgett colloidal crystals. Anomalously strong light scattering in conjunction with low reflectivity is observed with increasing angle of incidence in the spectral range of photonic bandgaps. The occurrence of light scattering at the interface has been assigned to the optical mode mismatch between the two types of photonic crystals. Photonic bandgap‐related mechanisms of trapping the decaying photonic crystal modes at the interface are suggested.  相似文献   

20.
We have investigated the characteristics of a terahertz (THz) beam steering method based on a combination of difference-frequency generation (DFG) with the principle of the phased array antenna. In the DFG of THz radiation from a nonlinear optical crystal pumped by optical beams, the phase front of the THz radiation is indirectly tilted by adjusting the relative incidence angle between the pump beams to the crystal. A magnification of the steering angle with a factor of 193 is demonstrated as the most important effect provided by the method. The effect allows the use of a high-speed optical deflector for adjusting the incidence angle, accelerating the steering more than a hundred times compared with mechanical methods. The phase mismatching between the THz radiation and the pump beams as well as the refraction at the crystal surface limit the steering angle of the THz radiation to 56°, full width at half maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号