首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Electronics based on layered indium selenide (InSe) channels exhibit promising carrier mobility and switching characteristics. Here, an InSe tribotronic transistor (denoted as w/In InSe T‐FET) obtained through the vertical combination of an In‐doped InSe transistor and triboelectric nanogenerator is demonstrated. The w/In InSe T‐FET can be operated by adjusting the distance between two triboelectrification layers, which generates a negative electrostatic potential that serves as a gate voltage to tune the charge carrier transport behavior of the InSe channel. Benefiting from the surface charging doping of the In layer, the w/In InSe T‐FET exhibits high reliability and sensitivity with a large on/off current modulation of 106 under a low drain–source voltage of 0.1 V and external frictional force. To demonstrate its function as a power‐saving tactile sensor, the w/In InSe T‐FET is used to sense “INSE” in Morse code and power on a light‐emitting diode. This work reveals the promise of 2D material–based tribotronics for use in nanosensors with low power consumption as well as in intelligent systems.  相似文献   

2.
An approach to produce organic light‐emitting transistors (OLETs) containing a laterally arranged heterojunction structure, which minimizes exciton quenching at the metal electrodes, is described. This device configuration provides an organic light‐emitting diode (OLED) structure where the anode (source) electrode, hole‐transport material (field‐effect material), light‐emitting material, and cathode (drain) electrode are laterally arranged, thus offering a chance to control the electroluminescent intensity by changing the gate bias. Pentacene and tris(8‐quinolinolato)aluminum (Alq3) are employed as the field‐effect and light‐emitting materials, respectively. The laterally arranged heterojunction structures are achieved by successively inclined deposition of the field‐effect and light‐emitting materials. After deposition of pentacene, a narrow gap of about 10–20 nm between the drain electrode and pentacene was obtained, thereby creating an opportunity to fabricate a laterally arranged heterojunction. In the OLETs, unsymmetrical source and drain electrodes, that is, Au and LiF/Al ones, are used to ensure efficient injection of holes and electrons. Visible‐light emission from OLETs is observed under ambient atmosphere. This result is ascribed to efficient carrier injection and transport, formation of a heterojunction, as well as good luminescence from the organic emissive layer. The device structure serves as an excellent model system for OLETs and demonstrates a general concept of adjusting the charge‐carrier injection and transport, as well as the electroluminescent properties, by forming laterally arranged heterojunctions.  相似文献   

3.
易于集成的有机薄膜场效应晶体管的制备   总被引:1,自引:0,他引:1  
用有机半导体并五苯作为有源层,聚四氟乙烯作为绝缘层,采用全蒸镀方式在真空室一次性制备了正装结构的有机薄膜场效应晶体管(OTFT)。薄的有机绝缘层使得器件工作在低电压下,有机薄膜场效应晶体管易于与显示像素(有机发光二极管(OLED))集成在同一个透明的刚性或者柔性衬底上。研究了有机薄膜场效应晶体管的源漏接触电阻和沟道电阻对器件性能的影响,结果表明接触电阻是影响器件性能的主要因素。在透明的玻璃衬底上实现了有机薄膜场效应晶体管对同一衬底上100μm×200μm红色有机发光二极管的驱动。  相似文献   

4.
In organic light‐emitting transistors, the structural properties such as the in‐plane geometry and the lateral charge injection are the key elements that enable the monolithic integration of multiple electronic, optoelectronic, and photonic functions within the same device. Here, the realization of highly integrated multifunctional optoelectronic organic device is reported by introducing a high‐capacitance photonic crystal as a gate dielectric into a transparent single‐layer ambipolar organic light‐emitting transistor (OLET). By engineering the photonic crystal multistack and bandgap, it is showed that the integration of the photonic structure has a twofold effect on the optoelectronic performance of the device, i.e., i) to modulate the spectral profile and outcoupling of the emitted light and ii) to enhance the transistor source–drain current by a 25‐fold factor. Consequently, the photonic‐crystal‐integrated OLET shows an order of magnitude higher emitted power and brightness with respect to the corresponding polymer‐dielectric device, while presenting as‐designed electroluminescence spectral and spatial distribution. The results validate the efficacy of the proposed approach that is expected to unravel the technological potential for the realization of highly integrated optoelectronic smart systems based on organic light‐emitting transistors.  相似文献   

5.
Switching and control of efficient red, green, and blue active matrix organic light‐emitting devices (AMOLEDs) by printed organic thin‐film electrochemical transistors (OETs) are demonstrated. These all‐organic pixels are characterized by high luminance at low operating voltages and by extremely small transistor dimensions with respect to the OLED active area. A maximum brightness of ≈900 cd m?2 is achieved at diode supply voltages near 4 V and pixel selector (gate) voltages below 1 V. The ratio of OLED to OET area is greater than 100:1 and the pixels may be switched at rates up to 100 Hz. Essential to this demonstration are the use of a high capacitance electrolyte as the gate dielectric layer in the OETs, which affords extremely large transistor transconductances, and novel graded emissive layer (G‐EML) OLED architectures that exhibit low turn‐on voltages and high luminescence efficiency. Collectively, these results suggest that printed OETs, combined with efficient, low voltage OLEDs, could be employed in the fabrication of flexible full‐color AMOLED displays.  相似文献   

6.
Tribotronics is a new field developed by coupling triboelectricity and semiconductor, which can drive triboelectric‐charge‐controlled optoelectronic devices by further introducing optoelectronics. In this paper, a tribotronic phototransistor (TPT) is proposed by coupling a field‐effect phototransistor and a triboelectric nanogenerator (TENG), in which the contact‐induced inner gate voltage by the mobile frictional layer is used for modulating the photodetection characteristics of the TPT. Based on the TPT, alternatively, a coupled energy‐harvester (CEH) is fabricated for simultaneously scavenging solar and wind energies, in which the output voltage on the external resistance from the wind driven TENG is used as the gate voltage of the TPT for enhancing the solar energy conversion. As the wind speed increases, the photovoltaic characteristics of the CEH including the short‐circuit current, open‐circuit voltage, and maximal output power have been greatly enhanced. This work has greatly expanded the functionality of tribotronics in photodetection and energy harvesting, and provided a potential solution for highly efficient harvesting and utilizing multitype energy.  相似文献   

7.
Materials commonly used in the carrier transport layers of organic light‐emitting diodes, where transport occurs through the bulk, are in general very different from materials used in organic field‐effect transistors, where transport takes place in a very thin accumulation channel. In this paper, the use of a high‐performance electron‐conducting field‐effect transistor material, diperfluorohexyl‐substituted quaterthiophene (DFH‐4T), as the electron‐transporting material in an organic light‐emitting diode structure is investigated. The organic light‐emitting diode has an electron accumulation layer in DFH‐4T at the organic hetero‐interface with the host of the light‐emitting layer, tris(8‐hydroxyquinoline) aluminum (Alq3). This electron accumulation layer is used to transport electrons and inject them into the active emissive host‐guest layer. By optimizing the growth conditions of DFH‐4T for electron transport at the organic hetero‐interface, high electron current densities of 750 A cm?2 are achieved in this innovative light‐emitting structure.  相似文献   

8.
Controllable shifting of threshold voltage and modulation of current in organic field‐effect transistors (OFETs) is demonstrated, resulting in the formation of unipolar inverters by making use of space‐charge electrets. Prior to the deposition of the organic semiconductor (OSC), negative corona charges are injected and trapped in the bulk of the organosilsesquioxane glass resin gate dielectrics. The effective surface potential is controlled by the corona‐charging and subsequent annealing process. It is found that the shift of the transfer characteristics is governed by the electrostatic induction effects of the charged gate electrets, and this observed shift can be related to the surface potential of the layer next to the transistor channel. The process control, efficiency, and long‐term stability of charge storage in spin‐on organosilsesquioxane glass resins are sufficient to enable the construction of simple unipolar inverters and to allow for circuit tuning. New OFET unipolar inverters with an enhancement‐mode driver and a depletion‐mode load are presented, composed of only two simple OFETs with the same channel dimensions and the same p‐type OSC on charged electrets. This design allows the implementation of full‐swing organic logic circuits and illustrates a potential process simplification for organic electronics.  相似文献   

9.
Triboelectric nanogenerators (TENGs) are considered as one of the most important renewable power sources for mobile electronic devices and various sensors in the Internet of Things era. However, their performance should inherently be degraded by the wearing of contact surfaces after long‐term use. Here, a ferroelectric polymer is shown to enable TENGs to generate considerable electricity without contact. Ferroelectric‐polymer‐embedded TENG (FE‐TENG) consists of indium tin oxide (ITO) electrodes, a polydimethylsiloxane (PDMS) elastomer, and a poly(vinylidene fluoride) (PVDF) polymer. In contrast to down‐ and non‐polarization, up‐polarized PVDF causes significantly large triboelectric charge, rapidly saturated voltage/current, and considerable remaining charge due to the modulated surface potential and increased capacitance. The remained triboelectric charges flow by just approaching/receding the ITO electrode to/from the PDMS without contact, which is sufficient to power light‐emitting diodes and liquid crystal displays. Additionally, the FE‐TENG can charge an Li‐battery with a significantly reduced number of contact cycles. Furthermore, an arch‐shaped FE‐TENG is demonstrated to operate a wireless temperature sensor network by scavenging the irregular and random vibrations of water waves. This work provides an innovative and simple method to increase conversion efficiency and lifetime of TENGs; which widens the applications of TENG to inaccessible areas like the ocean.  相似文献   

10.
A new type of nonvolatile ferroelectric poly(vinylidene fluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)) memory based on an organic thin‐film transistor (OTFT) with a single crystal of tri‐isopropylsilylethynyl pentacene (TIPS‐PEN) as the active layer is developed. A bottom‐gate OTFT is fabricated with a thin P(VDF‐TrFE) film gate insulator on which a one‐dimensional ribbon‐type TIPS‐PEN single crystal, grown via a solvent‐exchange method, is positioned between the Au source and drain electrodes. Post‐thermal treatment optimizes the interface between the flat, single‐crystalline ab plane of TIPS‐PEN and the polycrystalline P(VDF‐TrFE) surface with characteristic needle‐like crystalline lamellae. As a consequence, the memory device exhibits a substantially stable source–drain current modulation with an ON/OFF ratio hysteresis greater than 103, which is superior to a ferroelectric P(VDF‐TrFE) OTFT that has a vacuum‐evaporated pentacene layer. Data retention longer than 5 × 104 s is additionally achieved in ambient conditions by incorporating an interlayer between the gate electrode and P(VDF‐TrFE) thin film. The device is environmentally stable for more than 40 days without additional passivation. The deposition of a seed solution of TIPS‐PEN on the chemically micropatterned surface allows fabrication arrays of TIPS‐PEN single crystals that can be potentially useful for integrated arrays of ferroelectric polymeric TFT memory.  相似文献   

11.
在模拟与仿真的基础上.根据MOS器件的源漏击穿特性.分析了用于a-Si TFT有源驱动阵列的外围保护电路的工作原理;同时根据所采用的有源OLED单元像素驱动电路的特点,确定了电源线、数据线、信号线上的相应保护电路形式。该保护电路可应用于OLED的有源驱动TFT阵列。  相似文献   

12.
The cover shows an organic light‐emitting diode with remote metallic cathode, reported by Sarah Schols and co‐workers on p. 136. The metallic cathode is displaced from the light‐emission zone by one to several micrometers. The injected electrons accumulate at an organic heterojunction and are transported to the light‐emission zone by field‐effect. The achieved charge‐carrier mobility and in combination with reduced optical absorption losses because of the remoteness of the cathode may lead to applications as waveguide OLEDs and possibly a laser structure. (The result was obtained in the EU‐funded project “OLAS” IST‐ FP6‐015034.) We describe an organic light‐emitting diode (OLED) using field‐effect to transport electrons. The device is a hybrid between a diode and a field‐effect transistor. Compared to conventional OLEDs, the metallic cathode is displaced by one to several micrometers from the light‐emitting zone. This micrometer‐sized distance can be bridged by electrons with enhanced field‐effect mobility. The device is fabricated using poly(triarylamine) (PTAA) as the hole‐transport material, tris(8‐hydroxyquinoline) aluminum (Alq3) doped with 4‐(dicyanomethylene)‐2‐methyl‐6‐(julolindin‐4‐yl‐vinyl)‐4H‐pyran (DCM2) as the active light‐emitting layer, and N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (PTCDI‐C13H27), as the electron‐transport material. The obtained external quantum efficiencies are as high as for conventional OLEDs comprising the same materials. The quantum efficiencies of the new devices are remarkably independent of the current, up to current densities of more than 10 A cm–2. In addition, the absence of a metallic cathode covering the light‐emission zone permits top‐emission and could reduce optical absorption losses in waveguide structures. These properties may be useful in the future for the fabrication of solid‐state high‐brightness organic light sources.  相似文献   

13.
A flexible, biological field‐effect transistor (BioFET) for use in biosensing is reported. The BioFET is based on an organic thin‐film transistor (OTFT) fabricated mainly by inkjet printing and subsequently functionalized with antibodies for protein recognition. The BioFET is assessed for label‐free detection of a model protein, human immunoglobulin G (HIgG). It is characterized electrically to evaluate the contribution of each step in the functionalization of the OTFT and to detect the presence of the target protein. The fabrication, structure, materials optimization, electrical characteristics, and functionality of the starting OTFT and final BioFET are also discussed. Different materials are evaluated for the top insulator layer, with the aim of protecting the lower layers from the electrolyte and preserving the BioFET electrical performance.  相似文献   

14.
Controlling contact resistance in organic field‐effect transistors (OFETs) is one of the major hurdles to achieve transistor scaling and dimensional reduction. In particular in the context of ambipolar and/or light‐emitting OFETs it is a difficult challenge to obtain efficient injection of both electrons and holes from one injecting electrode such as gold since organic semiconductors have intrinsically large band gaps resulting in significant injection barrier heights for at least one type of carrier. Here, systematic control of electron and hole contact resistance in poly(9,9‐di‐n‐octylfluorene‐alt‐benzothiadiazole) ambipolar OFETs using thiol‐based self‐assembled monolayers (SAMs) is demonstrated. In contrast to common believe, it is found that for a certain SAM the injection of both electrons and holes can be improved. This simultaneous enhancement of electron and hole injection cannot be explained by SAM‐induced work‐function modifications because the surface dipole induced by the SAM on the metal surface lowers the injection barrier only for one type of carrier, but increases it for the other. These investigations reveal that other key factors also affect contact resistance, including i) interfacial tunneling through the SAM, ii) SAM‐induced modifications of interface morphology, and iii) the interface electronic structure. Of particular importance for top‐gate OFET geometry is iv) the active polymer layer thickness that dominates the electrode/polymer contact resistance. Therefore, a consistent explanation of how SAM electrode modification is able to improve both electron and hole injection in ambipolar OFETs requires considering all mentioned factors.  相似文献   

15.
Organic single crystals have a great potential in the field of organic optoelectronics because of their advantages of high carrier mobility and high thermal stability. However, the application of the organic single crystals in light‐emitting devices (OLEDs) has been limited by single‐layered structure with unbalanced carrier injection and transport. Here, fabrication of a multilayered‐structure crystal‐based OLED constitutes a major step toward balanced carrier injection and transport by introducing an anodic buffer layer and electron transport layer into the device structure. Three primary color single‐crystal‐based OLEDs based on the multilayered structure and molecular doping exhibit a maximum luminance and current efficiency of 820 cd cm?2 and 0.9 cd A?1, respectively, which are the highest performance to date for organic single‐crystal‐based OLEDs. This work paves the way toward high‐performance organic optoelectronic devices based on the organic single crystals.  相似文献   

16.
Although high carrier mobility organic field‐effect transistors (OFETs) are required for high‐speed device applications, improving the carrier mobility alone does not lead to high‐speed operation. Because the cut‐off frequency is determined predominantly by the total resistance and parasitic capacitance of a transistor, it is necessary to miniaturize OFETs while reducing these factors. Depositing a dopant layer only at the metal/semiconductor interface is an effective technique to reduce the contact resistance. However, fine‐patterning techniques for a dopant layer are still challenging especially for a top‐contact solution‐processed OFET geometry because organic semiconductors are vulnerable to chemical damage by solvents. In this work, high‐resolution, damage‐free patterning of a dopant layer is developed to fabricate short‐channel OFETs with a dopant interlayer inserted at the contacts. The fabricated OFETs exhibit high mobility exceeding 10 cm2 V?1 s?1 together with a reasonably low contact resistance, allowing for high frequency operation at 38 MHz. In addition, a diode‐connected OFET shows a rectifying capability of up to 78 MHz at an applied voltage of 5 V. This shows that an OFET can respond to the very high frequency band, which is beneficial for long‐distance wireless communication.  相似文献   

17.
Eco‐friendly and low‐cost cellulose nanofiber paper (nanopaper) is a promising candidate as a novel substrate for flexible electron device applications. Here, a thin transparent nanopaper‐based high‐mobility organic thin‐film transistor (OTFT) array is demonstrated for the first time. Nanopaper made from only native wood cellulose nanofibers has excellent thermal stability (>180 °C) and chemical durability, and a low coefficient of thermal expansion (CTE: 5–10 ppm K‐1). These features make it possible to build an OTFT array on nanopaper using a similar process to that for an array on conventional glass. A short‐channel bottom‐contact OTFT is successfully fabricated on the nanopaper by a lithographic and solution‐based process. Owing to the smoothness of the cast‐coated nanopaper surface, a solution processed organic semiconductor film on the nanopaper comprises large crystalline domains with a size of approximately 50–100 μm, and the corresponding TFT exhibits a high hole mobility of up to 1 cm2V‐1 s‐1 and a small hysteresis of below 0.1 V under ambient conditions. The nanopaper‐based OTFT also had excellent flexibility and can be formed into an arbitrary shape. These combined technologies of low‐cost and eco‐friendly paper substrates and solution‐based organic TFTs are promising for use in future flexible electronics application such as flexible displays and sensors.  相似文献   

18.
By doping 2,7‐bis[4‐(N‐carbazole)phenylvinyl]‐9,9′‐spirobifluorene (spiro‐SBCz) into a wide energy gap 4,4′‐bis(9‐carbazole)‐2,2′‐biphenyl (CBP) host, we demonstrate an extremely low ASE threshold of Eth = (0.11 ± 0.05) μJ cm–2 (220 W cm–2) which is the lowest ASE threshold ever reported. In addition, we confirmed that the spiro‐SBCz thin film functions as an active light emitting layer in organic light‐emitting diode (OLED) and a field‐effect transistor (FET). In particular, we succeeded to obtain linear electroluminescence in the FET structure which will be useful for future organic laser diodes.  相似文献   

19.
Organic single crystals have attracted great attention because of their advantages of high charge‐carrier mobility, high chemical purity, and potential for flexible optoelectronic devices. However, their intrinsic properties of sensitive to organic solvent and fragile result in a difficulty in the fabrication of the organic crystal‐based devices. In this work, a simple and non‐destructive technique of template stripping is employed to fabricate single‐crystal‐based organic light‐emitting devices (OLEDs). Efficient and uniform carrier injection induced by an improved contact between crystals and both top and bottom electrodes is realized, so that a homogeneous and bright electroluminescence (EL) are obtained. Highly polarized EL and even white emission is also observed. Moreover, the crystal‐based OLEDs exhibit good flexibility, and keep stable EL under a small bending radius and after repeated bending. It is expectable that this technique would support broad applications of the organic single crystals in the crystal‐based optoelectronic devices.  相似文献   

20.
A novel approach for alternating current (AC)‐driven organic light‐emitting devices is reported, which uses the concept of molecular doping in organic semiconductors. Doped organic charge‐transport layers are used to generate charge carriers within the device, hence eliminating the need for injecting charge carriers from external electrodes. Bright luminance of up to 1000 cd m?2 is observed when the device is driven with an AC bias. The luminance observed is attributed to charge‐carrier generation and recombination, leading to the formation of excitons within the device, without injection of charge carriers through external electrodes. A mechanism for internal charge‐carrier generation and the device operation is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号