首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
王宗清  段军  曾晓雁 《激光技术》2015,39(3):353-356
为了减小温度对半导体激光器输出光波长和功率稳定性的影响,设计了由恒流模块驱动半导体制冷器,通过改变恒流模块的电流来控制半导体制冷器的制冷量,利用分段积分的比例-积分-微分控制算法,选择最优控制参量,实现大功率半导体激光器的精密温控系统。系统包括高精度测温电路、控制核心DSP F28335、半导体制冷器控制电路、人机交互及通信模块。在5℃~26℃环境下对系统进行测试,实现50W大功率半导体激光器的恒温控制,温控范围为15℃~45℃,温控精度达到0.02℃。结果表明,该系统温控范围广,控制精度高,满足大功率半导体激光器的温控要求。  相似文献   

2.
杨涛  李武森  陈文建 《红外与激光工程》2022,51(2):20210764-1-20210764-8
为了应对带钢激光平直度测量仪中半导体激光器(LD)输出光功率稳定性对平直度测量精度的影响问题,设计了一款高稳定度的LD恒流驱动、温控电路以及保护电路。系统以现场可编程门阵列(FPGA)为控制核心,利用深度负反馈恒流驱动电路实现对LD驱动电流的精准控制;基于ADN8830温控电路实现了对LD工作温度的有效控制;改进后的慢启动电路可实现LD驱动电流缓慢地线性增加到设定值,且准确控制慢启动时间;限流及静电保护电路能够实现激光器过流保护、有效避免浪涌电流和高压静电的损坏。结果表明,该电路可实现激光器驱动电流在0~75 mA连续可调,电流调节精度达0.025 mA,电流短期稳定度达0.014%,长期稳定度达0.016%;在控制工作温度为25 ℃时,输出光功率稳定性为0.205%。  相似文献   

3.
为了解决布里渊光纤传感系统中半导体激光器光源输出功率和波长易受驱动电流和温度影响的问题,设计了一种高精度恒流驱动和温控电路。该电路利用深度负反馈积分电路对激光器驱动电流进行精密的恒流控制,同时采用集成温度控制芯片MAX1978控制半导体制冷片的工作电流,实现对激光器工作温度的精确控制。结果表明,本设计实现了驱动电流0mA~100mA可调,电流控制最大相对误差为0.06%,电流稳定度为0.02%,温度控制最大误差为0.03℃,在温控的条件下,光功率稳定性达到0.5%,最大漂移量为0.005dBm。该设计实现了对电流和温度的有效控制,保证了输出光的稳定性。  相似文献   

4.
半导体激光器(LD)应用越来越广泛,但是激光器对工作环境要求非常苛刻,为保证激光器正常工作,设计了激光器驱动电路及温控系统,通过电流负反馈设计高稳定性的恒流源电路,实现了 0.5%的高稳定度电流输出, 延时电路实现电路延时500ms启动,有效防止电流浪涌可能对激光器产生的危害,利用继电器设计出保护电路?实现电路过流保护,基于 MAX1978设计的温度控制系统可以实现高精度的温度控制,并可达到温控范围连续可调,温度波动范围低于 0.08℃。  相似文献   

5.
本文的主要工作以数字式大功率半导体激光器驱动电源设计展开,主要是实现能够给半导体激光器提供最大输出40A、输出电压在2V~10V的恒流源。基于驱动电源的技术要求,设计了驱动电路主回路、保护电路、温控单元等数字式大功率半导体激光器驱动电源的主要部分。  相似文献   

6.
大电流长脉宽LD激光器驱动电源的研制   总被引:1,自引:0,他引:1  
本文主要介绍了一种大电流长脉宽半导体激光器骄动电源的设计方法。根据大功率脉冲型LD的工作特性,作者设计了一套采用L—C串联谐振的恒流充电电路与大功率金属氧化层半导体场效应管(MOSFET)线性控制脉冲放电电路相结合的驱动电源。此电源满足了输出脉冲电流幅值、脉宽、重频、调Q精确延时均方便可调的要求;并且辅助以片上系统(soc)单片机和CPLD为核心的控制电路,使电源电路具有结构简单,控制灵活,精度高等特点;同时结合多路在线实时保护电路,有效保证了LD的安全工作。该电源已经成功应用于“XX装置”预放大器项目。  相似文献   

7.
大功率半导体激光器驱动电源的设计   总被引:1,自引:0,他引:1  
高能激光系统通常需要多种输出模式的驱动电源,现有电源存在输出模式单一的问题。采用能量压缩技术和电流串联负反馈技术实现了多输出模式半导体激光器驱动电源。分析了特殊设计高输入阻抗差分运算电路作为负反馈网络的工作原理,推导出了精确的参考电压与输出电流的关系式。最后,将所研制的驱动电源应用于国内首台400W工业级光纤激光器系统中,驱动电源实现了0~26A连续可调、稳定度优于0.15‰的连续电流和准连续电流输出。测试结果验证了设计思路的可行性,实现了半导体激光器驱动电源的多输出模式和高电流稳定度。  相似文献   

8.
蝶形半导体激光器驱动电流的稳定性直接决定了其输出波长的稳定性,进而影响检测精度。为了满足气体浓度检测中对激光器输出波长稳定可调的要求,设计了数字与模拟电路混合的恒流驱动电路。以STC90C51为主控芯片数控模块完成扫描键盘、DA转换;模拟电路主要由负反馈运算放大、高精度CMOS管和反馈电阻构成,完成电压到电流的转换,输出至蝶形半导体激光器,实现蝶形半导体激光器恒流驱动。输出电流在0~300 mA范围内连续可调,输出驱动电流误差小于±0.003 mA,满足系统对恒流驱动±0.005 mA的误差精度要求。  相似文献   

9.
大功率半导体激光器驱动电路   总被引:2,自引:0,他引:2       下载免费PDF全文
为实现30 W连续掺Yb光纤激光器,设计一种大功率(10 A)半导体激光器(LD)的驱动电路,该恒流源电路采用功率场效应管作电流控制元件,运用负反馈原理稳定输出电流,正向电流0 A~10 A连续可调,纹波峰值为10 mV,输出电流的短期稳定度达到1×10-5,具有过流保护、防浪涌冲击的功能。实际应用在30 W连续掺Yb光纤激光器中,结果表明该驱动电路工作安全可靠。  相似文献   

10.
作为激光器重要组成部分的激光器电源,其输出不仅要求大电流、低电压、高稳定度,而且工作脉冲频率较高(可达50 MHz)。针对此目标,设计了一种个将5 V、4 A转换为2.4 V、3.3 A恒流输出的激光器电源输出转换电路,为激光器提供稳定的电流,并通过TTL控制电路使输出频率可调。除此之外,笔者本文还讨论了一种半导体激光温度控制电路的设计方案,采用高集成、高性价比和高效率开关型驱动芯片MAX1968实现热电致冷驱动电路,能够实时监视和控制激光器温度,以稳定激光器的输出功率和波长。  相似文献   

11.
一种高稳定连续可调半导体激光器驱动源   总被引:2,自引:0,他引:2  
在连续变量相干光系统中,半导体激光器工作的稳定与否直接影响着检测结果。注入电流和工作温度是影响半导体激光器工作稳定的主要因素。因此激光器的驱动电源应是长时间、高稳定的恒流源,且带有恒温控制。采用电流串联负反馈技术,对控制量进行闭环控制,可实现高稳定和低纹波系数的驱动电流源,具有恒流特性好、纹波小、抗干扰能力强等优点。并采用自动温度控制电路对半导体激光器进行恒温控制,从而保证输出功率稳定,同时还采用了一系列的保护措施,实现半导体激光器的可靠运行。该系统采用单片机为主机,检测电路异常和控制保护电路,选择电压参数送入数字电压表显示,具有保护电路完善、操作直观的特点。  相似文献   

12.
廖平  莫少武 《激光技术》2013,37(4):541-546
为了实现光纤的精确快速测量, 设计了一种高稳定功率连续可调的1310nm/1550nm半导体激光驱动电源。该电源采用电流串联负反馈技术组成精密恒流源驱动半导体激光二极管,恒温控制电路驱动半导体制冷器,从而保证了激光器输出功率的稳定。控制器局域网络总线电路实现激光源的功率连续可调及激光的选择,通过变速积分PID控制算法消除了积分饱和,加速系统温度的稳定。采用激光保护和软启动电路,实现半导体激光器可靠稳定运行。结果表明,半导体激光器工作在室温25℃时,温度稳定性达0.01℃,激光长期输出功率稳定度达0.018dB。相对于传统的1310nm/1550nm半导体激光光源,该光源稳定性高、稳定速度快、体积小,方便光纤在线测量。  相似文献   

13.
半导体激光器的输出波长和功率随温度变化而变化,为了确保激光器工作性能,须对其进行恒温控制。采用脉冲宽度调制功率驱动器DRV595驱动半导体制冷器的方法,设计了一种双向大电流输出的高精度温度控制系统。在S域对系统进行了建模分析,搭建经典比例-积分-微分控制器,采用桥式采样电阻,纯硬件电路实现,结构简单,省掉了数字控制器的复杂软件编写。在常温试验中取得了±0.03℃的控制精度,DRV595集成脉冲宽度调制和双向MOSFET,输出电流最大为±4A。双向电流驱动半导体热电制冷器,实现了无死区控制。结果表明,脉冲宽度调制方式驱动和低输出级电阻大大降低了功率耗散。该系统工作稳定、功耗低、控制精度较高,具有实用价值。  相似文献   

14.
在半导体激光器的使用过程中,驱动电路直接影响着激光器的稳定性。对此文中提出了一种高效、稳定,宽功率输出范围的设计方案,采用采样电阻和恒流电路实现稳定的闭环控制,得到恒定的驱动电流;利用热敏电阻温度特性,温度控制电路结合单片机控制系统,实现温度的闭环控制,从而实现了稳定的温度控制要求;结合恒温,恒流控制以及单片机系统,设计功率闭环控制方案。实验结果表明,不同温度下,功率计测得功率与驱动电流成良好的线性关系,且功率范围宽、电路可靠工作时间长、激光器单色性稳定、系统稳定性好。  相似文献   

15.
王硕  王国臣  高伟 《半导体光电》2020,41(5):711-716
半导体激光器的输出性能直接决定了光纤电流互感器的测量精度和长期运行稳定性。为提高光纤电流互感器的测量精度与稳定性,设计了一种高精度半导体激光器数字驱动电路。以STM32微控制器为控制核心,利用高精度电流源芯片ADN8810实现驱动电流的精密控制,同时采用集成温控芯片MAX1978通过控制半导体制冷片的工作电流实现对激光器温度的精确控制。经实验测试,其输出电流稳定度为0.028%,温度控制稳定度为0.18%,激光器输出光功率稳定度达到0.06%,输出波长稳定度为0.05pm。该设计能够满足光纤电流互感器对光源输出性能的要求。  相似文献   

16.
为了解决电流和温度变化对小功率半导体激光二极管工作性能的影响,提出了一种激光稳定控制方法。通过设计恒流电路稳定激光管工作电流,双层温度控制电路稳定激光管工作温度,使半导体激光二极菅工作在稳定电流、温度的环境下。结果表明:激光管工作稳定,工作电流波动范围在μA量级,工作温度波动范围在10^-2℃量级,达到了设计的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号