首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 689 毫秒
1.
刘雷  刘霞  单宁 《激光与红外》2021,51(10):1286-1293
激光以其优异的性能在输电线路异物清除领域具有广阔的应用前景。为了安全、高效地清除输电线异物,须对激光与异物组织的作用机理进行研究。本文分析讨论了激光与尼龙材料的热作用机理,建立了激光束切割尼龙材料的三维数值仿真模型,仿真研究了不同激光移动速度和光斑尺寸下尼龙材料三维动态烧蚀形貌,分析研究了激光移动速度和光斑尺寸对材料烧蚀深度的影响趋势。结果表明,激光功率和光斑尺寸一定时,材料烧蚀的最高温度和烧蚀深度与激光移动速度成反比;激光功率和移动速度一定时,材料烧蚀的最高温度和烧蚀深度与光斑尺寸成反比。当激光功率为100W、光斑半径1cm时,烧蚀过程中不发生明火的激光最小移动速度为05cm/s。当激光移动速度为2cm/s、功率为100W 时,不发生明火的光斑最小直径为03cm。  相似文献   

2.
简述了散斑的形成机理,具体分析了在近场条件下通过降低激光的时间或空间相干性来抑制散斑的方法,以及仅通过降低激光的相干性来减弱激光显示中散斑的缺陷。提出一种全新在远场条件下减弱散斑的超声光栅法,且详细说明了超声波减弱散斑的工作原理。当合成的激光束通过因超声波在液体媒介中的传播而形成的"位相光栅"时,激光发生衍射,通过一系列透镜将所有衍射光完全会聚到投影屏幕上,投影移动的干涉条纹在屏幕上产生"沸腾"的散斑图样,考虑到人眼的视觉暂留特性。散斑在人眼中得到均匀化。以绿光为例,说明了激光束通过"位相光栅"时,经过CCD相机和图像处理系统,显示屏幕上散斑对比度和光强的变化,显示了超声光栅法有效地抑制了激光显示中的散斑现象。  相似文献   

3.
激光显示中散斑的抑制   总被引:2,自引:0,他引:2  
文章首先概述了散斑的形成机理,接着简述了在近场条件下通过降低激光的时间或空 间相干性来抑制散斑的许多方法,并具体分析了仅通过降低激光的相干性来减弱激光显示中散斑的缺陷。提出一种在远场条件下减弱散斑的两维扫描复面转镜,且详细说明了该转镜的工作原理,当合成的激光束通过旋转的复面镜时,移动的干涉条纹在屏幕上产生“沸腾”的散斑图样。最后以红光为例,说明了合成光束通过转镜时显示屏幕上散斑对比度的降低,显示了二维转镜有效地抑制了激光显示中的散斑现象。  相似文献   

4.
激光阵列光源角度多样性抑制散斑方法   总被引:3,自引:1,他引:2  
张圣涛  文宏  赵鹏飞  石云波 《中国激光》2013,40(1):102005-59
搭建测试系统,对宽面源单管半导体激光器(LD)和其组成的二维阵列光源的远场散斑特性进行了测量。使用方形光阑对激光二极管发出的照明光斑进行选择,测试不同位置的光斑的散斑对比度,实验结果表明随着光阑的移动,不同位置处光斑的散斑对比度没有明显的变化趋势,光斑的散斑对比度与光斑的选择区域无关。实验中使用4颗LD组成二维阵列光源引入非相干光源和角度多样性,调节LD与屏幕之间的距离改变相邻LD入射至屏幕的光的夹角,固定CCD物镜相对屏幕的张角,实验结果表明只有当入射光夹角大于物镜相对屏幕张角时,测试的散斑对比度会降低一个1/M1/2因子。  相似文献   

5.
郝海凌  侯红玲  黄涛  吴浪 《应用激光》2023,(12):108-115
为解决叠层材料激光环切制孔尺寸精度的问题,利用有限元软件对铝合金叠层材料进行激光环切制孔温度场仿真模拟,并通过APDL编程语言控制激光移动路径及激光参数。分析上表面的不同时刻和X-Z剖面的不同位置最高温度分布情况,研究了激光参数对孔位置和孔径值的影响规律,获得半径补偿量的大小。结果表明,在上表面中,随着时间推移,最高温度呈现缓慢的上升趋势且扩散面积逐渐增大,在X-Z剖面中,最高温度从上到下呈现递减趋势;随着激光功率的增加和移动速度的降低,入口孔径均大于出口孔径,孔的形貌呈现倒锥型,同时发现上出孔径均略小于下入孔径;在不同激光功率和移动速度下完成4 mm孔径时,半径补偿均在0.22 mm左右,可为实际激光制孔的半径补偿提供参考。  相似文献   

6.
铬原子束沉积纳米光栅结构的3维仿真   总被引:4,自引:3,他引:1       下载免费PDF全文
为了研究铬原子经过波长为425.55nm 1维高斯激光驻波会聚作用后的沉积情况,采用原子与激光相互作用的原子轨道方法和波动方法两种理论模型进行了3维仿真。结果表明,同一激光功率条件下,两种方法的仿真条纹在激光束方向上都具有相同的周期性,在垂直激光束方向上具有非常相似的延展性,即随着激光功率的增加,原本的一条仿真条纹会逐渐分裂开来,由于原子波动性的影响,波动方法仿真的条纹中还有明显的干涉边峰,这种现象随着激光功率的增加而变得更加明显。这些仿真结果为实验提供了更加丰富的理论指导。  相似文献   

7.
激光切割液晶玻璃是一个复杂的激光与材料相互作用的过程。在使用热裂法切割液晶玻璃时,裂纹尖端的应力强度因子(SIF)的大小是决定裂纹是否扩展的关键。使用热权函数技术计算了激光切割过程中裂纹尖端SIF的大小,与断裂判据相比较判断裂纹的扩展情况。研究了激光功率、光斑半径、切割速度和裂纹长度对切割过程中裂纹尖端SIF的影响,结果表明激光功率越大、切割速度越小、光斑半径越小时,裂尖SIF的增大速度越快、峰值越大以及不同裂纹长度下裂尖SIF的增大速度和峰值也不同。并通过实验进行验证,说明了该技术的可行性。  相似文献   

8.
焊接过程中产生的等离子体是激光深熔焊的固有现象,它通过对激光能量的吸收、折射、反射等降低到达小孔的激光能量密度,影响激光与工件相互作用。使用微距高速摄影系统,研究了大功率CO2激光焊接不同功率和不同侧吹气体流量下等离子体的形态和尺寸的变化规律。在相同条件下,激光功率越大,等离子体的尺寸越大,而且越不稳定,容易出现激光维持的燃烧(LSC)波,严重影响焊接过程的稳定性。而通过增加侧吹气体的流量,可以有效抑制LSC波的产生,并且减小等离子体的尺寸,增加焊缝熔深。  相似文献   

9.
研究了Hg Cd Te红外探测器的结构以及材料特性,阐述了激光损伤Hg Cd Te红外探测器的机理,建立了Hg Cd Te红外探测器三维仿真模型,利用有限元分析法,对10.6μm CO2激光辐照Hg Cd Te探测器的温度变化情况进行了仿真,并通过参考已有文献的实验数据,验证了模型的准确性。当Hg Cd Te探测器受到峰值功率密度为5×107 W/cm2的单脉冲激光辐照时,Hg Cd Te晶体的Hg离子开始析出,探测器性能降低,并不可恢复;当激光峰值功率为108 W/cm2,探测器Hg Cd Te晶体开始出现熔融现象,此时激光能量密度为1 J/cm2;当激光峰值功率为2×108 W/cm2时,铟柱达到熔融温度,探测器会出现铟柱脱落现象,被彻底损坏。  相似文献   

10.
李成瑞  谭景甲 《红外》2023,44(6):44-48
为了满足光束合成、激光对抗、材料激光损伤测试等领域的激光功率测试需求,研制了一种基于赛贝克效应的百瓦量级热电堆激光功率测试仪器。该仪器无需偏置电压电路即可正常工作,能够实现连续激光辐射功率测试且探测的激光功率量程宽、稳定性高。对波长为1064 nm的激光功率进行了测试实验。在1.5~250 W的功率范围内,采用本文方案研制的热电堆激光功率计的测试结果与标准激光功率计测试结果之间的误差在±3%范围以内。  相似文献   

11.
蒙文  张文杰  李云霞  赵鹏博 《激光与红外》2016,46(11):1329-1333
针对激光毁伤低慢小目标ATP系统跟瞄误差造成的光斑抖动问题,建立激光斜程辐照低慢小目标的高斯分布等效光斑模型。通过仿真,得到特定大气能见度条件下瞄准误差角度、目标天顶角和目标高度的关系曲线,及不同初始天顶角条件下到达目标表面光斑形态及功率密度,并分析辐照天顶角及目标飞行高度对目标表面归一化功率密度的影响,得到了典型低慢小目标尼龙材料激光防御过程中对ATP系统跟瞄误差的要求,为激光防御低慢小目标各项参数设定及自适应系统的完善提供了依据。  相似文献   

12.
设计的振镜式激光扫描运动目标模拟系统就是用来检测某地面防空武器的光电跟踪系统,其能够根据目标的运动方式和运动状态在实验室模拟实现可供光电跟踪的运动目标。课题采用振镜式激光扫描运动目标模拟技术,激光束经过双振镜的全反射后在投影屏幕上利用光斑扫描出目标运动的轨迹,该光斑就是模拟光电跟踪系统跟踪的模拟运动目标,它具有真实目标的可见光和红外特性。  相似文献   

13.
为了开展典型材料结构的抗激光防护与加固,需要对各类材料结构进行激光辐照效应研究。本文通过仿真结合实验的方法对到靶功率1.5~2.8 kW、光斑直径10~20 mm连续激光对厚度7~15 mm圆柱形壳体的热力损伤效应进行研究,明确了不同加载条件下的损伤现象与机理。基于相似理论建立强激光辐照下壳体的热力响应模型,通过实验得到了壳体在连续激光作用下的损伤演化历程;由实验结果可知,钢壳体烧蚀机理主要表现为熔融烧蚀及汽化反冲压作用下的质量迁移,烧蚀过程中辐照区域出现了明显的熔化、汽化过程,熔池区有熔融金属喷溅现象。  相似文献   

14.
冷坤  武文远  龚艳春  杨云涛  章曦 《激光与红外》2018,48(12):1480-1485
大气光学效应是影响激光器作用效能的重要因素之一。基于多层相位屏法,针对海上大气环境下激光水平传输做了大量数值仿真,通过在湍流相位屏上叠加热晕以及衰减引起的相位变化,综合考虑三者对激光传输特性的影响;分析了不同激光初始功率、不同折射率结构常数、不同能见度以及有无热晕情况下接收面处激光光斑半径,质心漂移均方根和环围功率比的变化规律。仿真结果表明:激光初始功率越强,热晕效应越明显,光斑畸变越严重,光束质量变差;折射率结构常数越大,湍流效应越强,光斑扩展与光束漂移现象越明显,平均功率密度下降,环围功率比增加;能见度越小,激光能量衰减越严重,环围功率比越大;热晕效应会加大光斑扩展程度,增加光束漂移量和环围功率比。研究结果可为海上大气环境对激光器作用效能评估提供一定的理论依据。  相似文献   

15.
作为一种前沿的激光探测技术,单光子激光测距技术已成功应用于月球测距、卫星测距和地面测高等领域。然而,单光子测距在机载空对空、地对空平台上对高速运动目标进行跟踪测距时,回波光子落在不同的时间窗,导致直接计数无法有效提取信号的问题仍需解决。针对空对空条件下单光子激光测距的应用需求,基于时间相关光子计数技术设计一种适用于全天时、宽时域、多噪声条件下对高速运动目标的单光子测距方法。该方法采用阵列单光子探测器和相邻时间窗相关统计多帧处理算法提取激光回波光子信号,并在Matlab平台上对算法进行仿真实验,使用多元阵列单光子探测器实现最大测程百公里以上、背景噪声计数率约为5 MHz、单脉冲回波光子计数平均值为1条件下的回波光子信号提取。该方法能够克服传统单光子探测只能对准静态目标测距,只能在小接收视场和小波门范围等弱背景噪声及目标轨迹可预测条件下应用的限制,将单光子探测由只能固定平台夜晚对准静态目标测距推广至通用平台全天时对高速运动目标测距。  相似文献   

16.
赵楠翔  胡以华 《红外与激光工程》2019,48(10):1005005-1005005(7)
针对激光反射层析成像中目标随机抖动与径向运动造成的投影中心失配问题,提出采用相位恢复算法对重构图像进行相位恢复重建,通过反复光强迭代消除目标随机运动造成的相位误差,达到减少重构误差、恢复目标图像的目的。为改进G-S算法收敛速度与恢复精度,提出频域模值加权方法进行投影数据相位迭代恢复,仿真实验表明,将算法收敛速度与收敛精度提高了1.2倍以上。通过对三组仿真实验处理,重构图像的平均相对均方误差由2.487 5下降到0.792 7,有效地恢复了目标图像轮廓。外场实验表明,该算法能够有效消除重构图像伪迹,改善激光反射层析成像系统成像质量。  相似文献   

17.
为了提高激光武器抗烟幕干扰的能力,通过利用相关理论进行推导和计算,分别得出施放烟幕前后目标表面光斑尺寸的大小与探测器接收到的来自目标的激光功率以及烟幕干扰效果之间的关系,以模拟烟幕对激光武器的干扰效果评估。验证了理论推导和计算基本符合实际情况。研究表明,光束的半径越小,能量越集中,烟幕对激光武器的干扰效果越差,激光武器的抗干扰能力越强。  相似文献   

18.
李一芒  高世杰  盛磊 《红外与激光工程》2016,45(3):322001-0322001(7)
为评估分集收发技术在近海面激光通信系统应用中对大气湍流扰动的抑制作用,设计了基于对多路1 550 nm激光光斑同步采集的验证实验方案。采用由时统终端触发的FPGA+多核DSP架构的实时图像处理系统实现目标中心位置的提取与目标灰度和的统计,进而得到激光从发射端至接收端的到达角起伏方差和闪烁指数。分别比较了等功率条件下单路发射和双路发射间、双孔径接收与等效单孔径接收间的到达角起伏方差和闪烁指数,同时比较了不同跨距下双孔径接收的效果。实验表明,在发射功率相同的情况下,与单路发射相比,双路发射能够有效地抑制因大气湍流扰动产生的到达角起伏和光强闪烁;在接收面积相同情况下,双孔径接收较单孔径接收所产生的到达角起伏与光强闪烁更弱,且在一定范围内,双孔径间的跨距存在最优值。  相似文献   

19.
激光束在大气中传播的过程中会受到大气湍流的影响,导致光斑发生畸变,影响光束质量,并且在真实情况下湍流是随着时间变化的。本文针对这一问题,基于傅里叶变换的谱反演法建立了湍流相位屏模型,并根据湍流冻结法获得动态相位屏,开展了激光在不同强度的动态大气湍流中传输的仿真研究。仿真结果表明:对于相同的激光束,在相同时间内的光斑畸变随着大气湍流强度的增加而增加,并且接收到的功率密度整体上减小,起伏增加。  相似文献   

20.
为了解决凸轮激光热处理过程中热效应相等的问题,在保证激光光斑在工件曲线表面的相对扫描速率恒定、热处理过程中激光聚焦镜中心到工件轮廓表面的距离不变以及激光束始终沿工件轮廓面的法线方向入射的技术基础之上,提出了控制激光光斑匀速运动的瞬时同心异径算法。同一时刻,工件轮廓表面与等距线上对应点具有相同的圆心,通过设定的工件轮廓表面恒定扫描速度,可以反求出位于等距线上相应点激光头的速度,进而对激光头进行控制。利用MATLAB进行了仿真计算,得出了等距线上激光头的速度值。结果表明,该算法可以解决激光热处理过程中激光头的速度问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号