首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In this paper, we present a theoretical model based on the detailed balance theory of solar thermophotovoltaic systems comprising multijunction photovoltaic cells, a sunlight concentrator and spectrally selective surfaces. The full system has been defined by means of 2n + 8 variables (being n the number of sub‐cells of the multijunction cell). These variables are as follows: the sunlight concentration factor, the absorber cut‐off energy, the emitter‐to‐absorber area ratio, the emitter cut‐off energy, the band‐gap energy(ies) and voltage(s) of the sub‐cells, the reflectivity of the cells' back‐side reflector, the emitter‐to‐cell and cell‐to‐cell view factors and the emitter‐to‐cell area ratio. We have used this model for carrying out a multi‐variable system optimization by means of a multidimensional direct‐search algorithm. This analysis allows to find the set of system variables whose combined effects results in the maximum overall system efficiency. From this analysis, we have seen that multijunction cells are excellent candidates to enhance the system efficiency and the electrical power density. Particularly, multijunction cells report great benefits for systems with a notable presence of optical losses, which are unavoidable in practical systems. Also, we have seen that the use of spectrally selective absorbers, rather than black‐body absorbers, allows to achieve higher system efficiencies for both lower concentration and lower emitter‐to‐absorber area ratio. Finally, we have seen that sun‐to‐electricity conversion efficiencies above 30% and electrical power densities above 50 W/cm2 are achievable for this kind of systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
An analytical model for a full solar thermophotovoltaic (STPV) system with cylindrical symmetry is presented. In contrast to the already published TPV models, this model considers both TPV optical cavity and absorber (or heating) systems. An analytical ray‐tracing method has been used to analyse the radiation interchange within a TPV optical cavity. It allows us to calculate the portion of the absorbed power in each component within the system. Using this model, a broad analysis of an STPV system has been carried out, finding the optimum configurations and presenting a detailed loss analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Methods to enhance the thermal and electrical efficiencies through novel design of combustion and thermal management of the combustor in a miniature thermophotovoltaic (TPV) system are proposed, discussed, and demonstrated in this paper. The miniature TPV system consists of a swirling combustor surrounded by GaSb PV cell arrays. The swirl combustor design, along with a heat‐regeneration reverse tube and mixing‐enhancing porous‐medium fuel injection, improves the low illumination and incomplete combustion problems associated with typical miniature TPV systems. A reverse tube is used to enforce swirling flame attachment to the inner wall of the emitter by pushing the swirl recirculation zone back into the chamber and simultaneously redirecting the hot product gas for reheating the outer surface of the emitter. The porous medium fuel injector is used as a fuel/air mixing enhancer and as a flame stabilizer to anchor the flame. The miniature TPV system, using different combustor configurations, is tested and discussed. Results indicate that the proposed swirling combustor with a reverse tube and porous medium can improve the intensity and uniformity of the emitter illumination, and can increase the thermal radiant efficiency. Consequently, the overall thermal efficiency and electrical output of the miniature TPV system are greatly enhanced. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Increasing sunlight conversion efficiency is a key driver for on‐going solar electricity cost reduction. For photovoltaic conversion, the approach most successful in increasing conversion efficiency is to split sunlight into spectral bands and direct each band to a dedicated solar cell of an appropriate energy bandgap to convert this band efficiently. In this work, we demonstrate conversion of sunlight to electricity in a solar collector with an efficiency value above 40% for the first time, using a small 287‐cm2 aperture area test stand, notably equipped with commercial concentrator solar cells. We use optical band‐pass filtering to capture energy that is normally wasted by commercial GaInP/GaInAs/Ge triple junction cells and convert this normally wasted energy using a separate Si cell with higher efficiency than physically possible in the original device. The 287‐cm2 aperture area sunlight‐concentrating converter demonstrating this independently confirmed efficiency is a prototype for a large photovoltaic power tower system, where sunlight is reflected from a field of sun‐tracking heliostats to a dense photovoltaic array mounted on a central tower. In such systems, improved efficiency not only reduces costs by increasing energy output for a given investment in heliostats and towers but also reduces unwanted heat generation at the central tower. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Designs of thermophotovoltaic (TPV) generators with infrared emitters heated by concentrated solar radiation are developed, fabricated, and tested. Emitters made of SiC, W, or Ta of various forms and sizes are studied. To the GaSb-based thermophotovoltaic cells, the efficiency of transformation of thermal radiation of W emitters was 19%. The features of operation of two variants of TPV generators, namely, of cylindrical and conical types, are considered. In a demonstration model of the TPV generator consisting of 12 photocells, the output electric power with conversion of the concentrated solar radiation was P = 3.8 W.  相似文献   

6.
HgTe nanocrystals are demonstrated to increase the photon‐harvesting efficiency of hybrid solar cells over a broad spectral region between 350 and 1500 nm. Devices combining two solar cell concepts, a solid‐state nanocrystal‐sensitized solar cell and a nanocrystal/polymer‐blend solar cell, are described. These devices give incident photon to current efficiencies up to 10 % at around 550 nm monochromatic irradiation and short‐circuit current densities of 2 mA cm–2 under simulated AM1.5 (100 mW cm–2) illumination (AM: air mass).  相似文献   

7.
High-current solar cells based on gallium antimonide and intended for use in solar modules and systems with solar-spectrum splitting at large solar light concentration ratios, in thermophotovoltaic generators with a high-temperature emitter, and in laser energy converters have been designed and fabricated by the diffusion of zinc from the gas phase. The influence exerted by the thickness of the p + diffusion layer on the basic characteristics of the solar cell has been studied. The optimal doping profile and the p-n-junction depth providing a high photovoltaic conversion efficiency at photocurrent densities of up to 100 A cm?2 have been determined.  相似文献   

8.
A thermophotovoltaic (TPV) system converts heat that is absorbed via conduction, convection, and/or radiation to electricity. The efficiency of TPV energy conversion can be improved with a narrowband selective emitter that emits photons at just above the bandgap energy towards the TPV photodiode. We numerically report a selective metamaterial (MM) emitter design with a single layer of cylindrical structures of p-type silicon (boron-doped). Our design (substrate-free) features a peak absorbance of 94.8% at the wavelength of 3.47 μm with the smallest lateral dimension of 0.8 μm. The absorption is found to be due to the resonance of electric and magnetic fields in the structure. The larger dimensions of our selective MM emitter design make it significantly easier to pattern than many of previously reported selective MM emitters operating at similar wavelengths to that of our work. We believe that our work demonstrates a path forward for future research on larger-area all-semiconductor selective MM emitters with a variety of peak absorbance wavelengths for TPV applications.  相似文献   

9.
The status of the development of a new concentrator module in Japan is discussed based on three arguments, performance, reliability and cost. We have achieved a 26·6% peak uncorrected efficiency from a 7056 cm2 400 × module with 36 solar cells connected in series, measured in house. The peak uncorrected efficiencies of the same type of the module with 6 solar cells connected in series and 1176 cm2 area measured by Fraunhofer ISE and NREL are reported as 27·4% and 24·8% respectively. The peak uncorrected efficiency for a 550× and 5445 cm2 module with 20 solar cells connected in series was 28·9% in house. The temperature‐corrected efficiency of the 550 × module under optimal solar irradiation condition was 31·5 ± 1·7%. In terms of performance, the annual power generation is discussed based on a side‐by‐side evaluation against a 14% commercial multicrystalline silicon module. For reliability, some new degradation modes inherent to high concentration III‐V solar cell system are discussed and a 20‐year lifetime under concentrated flux exposure proven. The fail‐safe issues concerning the concentrated sunlight are also discussed. Moreover, the overall scenario for the reduction of material cost is discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The first energy conversion efficiencies of over 5% are reported for evaporated solid‐phase crystallised (SPC) polycrystalline silicon thin‐film solar cells. All cells have a size of 2 cm2 and are formed on planar glass superstrates. Back surface reflectance is provided by a simple coating with commercial white paint. The best cells have short‐circuit current densities of about 19 mA/cm2 and external quantum efficiencies peaking at above 80%. The diffusion length in the base of the solar cells is larger than the base thickness, providing significant room for further efficiency improvements via an increased thickness of the base layer. Additional improvements are expected via the use of textured glass sheets, boosting the light trapping capabilities of the cells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper links together two different yet complimentary technologies: concentrator photovoltaics (CPVs) and Sliver technology. Recent research and development and commercialisation efforts in concentrator technologies have centred on high‐concentration systems, encouraged by the availability of high‐efficiency, multi‐junction III‐V cells. In contrast, little attention has been paid to the potential of systems with low‐to‐medium levels of concentration. Arguably, this is due to the absence of any suitable, low‐cost concentrator cells, readily available at a commercial scale. Sliver technology is a candidate for the supply of commercial low‐cost cells suitable for systems with concentration ratios in the range of 5–50. This can be achieved via judicious choice of cell design parameters and with only minor changes to the fabrication process suitable for 1‐sun Sliver cells. Device modelling is used to show that Sliver cells are suitable for illumination intensities up to 5 W/cm2, with unavoidable emitter resistance limiting performance for higher intensities. The best cells manufactured for operation at low and medium concentration had efficiencies of 18·8% at 9 suns (above 18·6% between 5 and 15 suns) and 18·4% at 37 suns (above 18·2% between 30 and 50 suns), respectively. Incorporation of sidewall texturing and SiN anti‐reflection coatings would yield efficiencies exceeding 20% for similar cells. Concentrator Sliver cells can be produced to almost any length and are perfectly bifacial, features which add significantly to their attractiveness to concentrator system designers. The availability of cheap concentrator Sliver cells could provide opportunities for new, low‐cost concentrator systems, which in turn has the potential to provide a pathway to low‐cost solar electricity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Proposed recently, thermophotonic (TPH) converters use a hot photovoltaic (PV) device operating as a light-emitting diode (LED) to transform heat into narrow band luminous energy, which is efficiently transformed into electricity by another cool PV cell. They resemble a thermophotovoltaic (TPV) system with the passive emitter replaced by an LED. In the ideal limit, these converters have a very high potential efficiency. They are ideally capable of working at high power fluxes at temperatures around 300/spl deg/C with more than 40% efficiency. Thanks to the thermal concentration scheme proposed here, at this temperature the absorber can be static and no optical concentration is needed. The main drawback of the converters is the sensitivity of the efficiency to the external quantum efficiency of the LED, which must be very high at a high temperature.  相似文献   

13.
Light trapping and photon management in honeycomb‐textured microcrystalline silicon solar cells are investigated experimentally and by modeling of the manufacturing process and the optical wave propagation. The solar cells on honeycomb‐textured substrates exhibit short circuit current densities exceeding 30 mA/cm2 and energy conversion efficiencies of up to 11.0%. By controlling the fabrication process, the period and height of the honeycomb‐textured substrates are varied. The influence of the honeycomb substrate morphology on the interfaces of the individual solar cell layers and the quantum efficiency is determined. The optical wave propagation is calculated using 3D finite difference time domain simulations. A very good agreement between the optical simulation and experimental results is obtained. Strategies are discussed on how to increase the short circuit current density beyond 30 mA/cm2. In particular, the influence of plasmonic losses of the textured silver (Ag) reflector on the short circuit current and quantum efficiency of the solar cell is discussed. Finally, solar cell structures with reduced plasmonic losses are proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
We present a heterojunction (HJ) solar cell on n‐type epitaxially grown kerfless crystalline‐silicon with an in‐house‐measured conversion efficiency of 23%. The total cell area is 243.4 cm2. The cell has a short‐circuit current density of 39.6 mA cm−2, an open‐circuit voltage of 725 mV, and a fill factor of 0.799. The effect of stacking faults (SFs) is examined by current density (J) mapping measurements as well as by spectral response mapping. The J mapping images show that the localized lower J regions of the HJ solar cells are associated with recombination sites originating from SFs, independent of whether SFs are formed on the emitter or absorber side. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of Si HJ solar cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
对太阳能热光伏系统(STPV)进行了全面的实验研究,对系统组成装置即聚光器、辐射器、滤波器、电池、散热器等进行了合理的选型及加工;设计了系统中热光伏转换器的整体结构,并进行实验搭建,结合自动跟踪装置,对整个STPV系统进行了现场测试,分析了太阳能量密度对辐射器温度的影响,对不同辐射器入口条件下的温度分布进行了比较,并测量了不同辐射器温度下的电池输出特性;研究了散热器流速对电池温度及其输出功率的影响;讨论了实验测量值与理论解存在差异的原因。  相似文献   

16.
The development of III-V concentrator solar cells and thermophotovoltaic converters is at a critical point in which both sophisticated technology and an accurate modeling are required. This paper emphasizes the aspects relating to the modeling of multijunction solar cells for the concentration of applications and thermophotovoltaic converters. In the case of solar cells, the key aspects are
  • —Necessity of three-dimensional modeling
  • —Consideration of real conditions of operation
  • —Critical review of material parameters.
For TPV converters, the aforementioned aspects are also to be applied. Preliminarily, the material parameters of the less mature thermophotovoltaic semiconductors must be specified or even measured.  相似文献   

17.
In this study, back‐contacted back‐junction n‐type silicon solar cells featuring a large emitter coverage (point‐like base contacts), a small emitter coverage (point‐like base and emitter contacts), and interdigitated metal fingers have been fabricated and analyzed. For both solar cell designs, a significant reduction of electrical shading losses caused by an increased recombination in the non‐collecting base area on the rear side was obtained. Because the solar cell designs are characterized by an overlap of the B‐doped emitter and the P‐doped base with metal fingers of the other polarity, insulating thin films with excellent electrical insulation properties are required to prevent shunting in these overlapping regions. Thus, with insulating thin films, the geometry of the minority charge carrier collecting emitter diffusion and the geometry of the interdigitated metal fingers can be decoupled. In this regard, plasma‐enhanced chemical vapor deposited SiO2 insulating thin films with various thicknesses and deposited at different temperatures have been investigated in more detail by metal‐insulator‐semiconductor structures. Furthermore, the influence of different metal layers on the insulation properties of the films has been analyzed. It has been found that by applying a SiO2 insulating thin film with a thickness of more than 1000 nm and deposited at 350 °C to solar cells fabricated on 1 Ω cm and 10 Ω cm n‐type float‐zone grown silicon substrates, electrical shading losses could be reduced considerably, resulting in excellent short‐circuit current densities of more than 41 mA/cm2 and conversion efficiencies of up to 23.0%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Maximization of module conversion efficiency based on global normal irradiance (GNI) rather than direct normal irradiance (DNI) was experimentally demonstrated using a hybrid concentrator photovoltaic (CPV) architecture in which a low‐cost solar cell (a bifacial crystalline silicon cell) was integrated with a high‐efficiency concentrator solar cell (III–V triple‐junction cell) to harvest diffuse sunlight. The results of outdoor experiments showed that the low‐cost cell enhanced the generated power by factors of 1.39 and 1.63 for high‐DNI and midrange‐DNI conditions, respectively, and that the resultant GNI‐based module efficiencies were 32.7% and 25.6%, respectively. © 2016 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.  相似文献   

19.
Silicon represents an interesting material to fabricate low‐cost and relatively simple and high‐efficient solar cells in the low and medium concentration range. In this paper, we discuss a novel cell scheme conceived for concentrating photovoltaic, named emitter wrap through with deep grooved base (EWT‐DGB), and compare it with the simpler passivated emitter solar cell. Both cells have been fabricated by means of a complementary metal–oxide–semiconductor‐compatible process in our laboratory. The experimental characterization of both cells is reported in the range 1–200 suns in terms of conversion efficiency, open circuit voltage, short circuit current density and fill factor. In particular, for the EWT‐DGB solar cells, we obtain an encouraging 21.4% maximum conversion efficiency at 44 suns. By using a calibrated finite‐element numerical electro‐optical simulation tool, validated by a comparison with experimental data, we study the potentials of the two architectures for concentrated light conditions considering possible realistic improvements with respect to the fabricated devices. We compare the solar cell figures of merit with those of the state‐of‐the‐art silicon back‐contact back‐junction solar cell holding the conversion efficiency record for concentrator photovoltaic silicon. Simulation results predict a 24.8% efficiency at 50 suns for the EWT‐DGB cell and up to 23.9% at 100 suns for the passivated emitter solar cell, thus confirming the good potential of the proposed architectures for low to medium light concentration. Finally, simulations are exploited to provide additional analysis of the EWT‐DGB scheme under concentrated light. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Silicon based thin tandem solar cells were fabricated by plasma enhanced chemical vapor deposition (PECVD) in a 30 × 30 cm2 reactor. The layer thicknesses of the amorphous top cells and the microcrystalline bottom cells were significantly reduced compared to standard tandem cells that are optimized for high efficiency (typically with a total absorber layer thickness from 1.5 to 3 µm). The individual absorber layer thicknesses of the top and bottom cells were chosen so that the generated current densities are similar to each other. With such thin cells, having a total absorber layer thickness varying from 0.5 to 1.5 µm, initial efficiencies of 8.6–10.7% were achieved. The effects of thickness variations of both absorber layers on the device properties have been separately investigated. With the help of quantum efficiency (QE) measurements, we could demonstrate that by reducing the bottom cell thickness the top cell current density increased which is addressed to back‐reflected light. Due to a very thin a‐Si:H top cell, the thin tandem cells show a much lower degradation rate under continuous illumination at open circuit conditions compared to standard tandem and a‐Si:H single junction cells. We demonstrate that thin tandem cells of around 550 nm show better stabilized efficiencies than a‐Si:H and µc‐Si:H single junction cells of comparable thickness. The results show the high potential of thin a‐Si/µc‐Si tandem cells for cost‐effective photovoltaics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号