首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
薄膜EL器件     
这是有关用作显示器件的薄膜 EL 器件的发明.近来,碱土类硫硒碲化合物为基质、Ce激活发光层的薄膜 EL 器件,由于它能得到较高亮度的蓝色发光而受到重视。这种薄膜EL 器件,通常是在 SrS 和 SrSe 碱土类硫硒碲化合物(用溅射方法或真空蒸发方法形成)中,把其中一种化合物作为基质,用 Ce 激活的薄膜用来做发光层。以 SrS 或 SrSe 为基质,用 Ce 激活的发光层作为薄膜 EL 器件,能够得到 ZnS 基质发光EL 器件所不可能达到的高亮度蓝色发光。  相似文献   

2.
Zn:Mn 薄膜交流 EL 平板显示器件在高亮度、长寿命和稳定性等方面所取得的进展使人们对这种显示器件的兴趣进一步增加。由于 ZnS:EL 屏的发光颜色局限于橙黄色。因此,人们为了研制多色薄膜 EL 器件而进行不了懈的努力。然而,在研制白色薄膜 EL 器件方面所做的尝试却很少。至今已报导过的较好的白色薄膜 EL 磷光体 ZnS:PrF_3,在5kHz 电压驱动下只能给出350cd/m~2的较低亮度。最近的研究表明,稀土掺杂的碱土硫化物对于多色薄膜 EL 器件来说是一种有希望的材料,尤其是 SrS:Ce 已成为蓝色 FL 的一种  相似文献   

3.
近些年来,人们已经发现减土硫化物如SrS和CaS可能是用于彩色薄膜电致发光(TFEL) 的较好的基质材料。为了实现具有大量家元和较高亮度的矩阵显示,一个重要并且必需的特性是在ZnS:Mn TFEL器件中所观察到的那种固有的记忆效应。但直到现在仅有几篇关圩碱土硫化物TFEL器件记忆效应的报导。本文报导了SrS:Ce,K蓝色TFEL器件的固有的记忆效应。这种TFEL器件由一个夹在两个绝缘层之间的SrS:Ce,K EL发光层组成。SrS:Ce,K层夹在两个ZnS层中间,ZnS层的作用是保护SrS:Ce,K层。为了制备有效的SrS:Ce,K发光膜,采用  相似文献   

4.
用于薄膜电致发光(EL)器件的 SrS:CeCl_3发光层的结晶性能直接受与其邻近的底层膜的影响。在一种以强立方(111)取向 ZnS 薄膜作为底层的 EL 薄膜器件中实现了明亮的蓝色发射,在5KHz 正弦电压激发下,器件的最大亮度力100nt。根据 x 射线衍射图和发光层的光致发光光谱讨论了 EL特性。  相似文献   

5.
1、前言薄膜EL器件是自发辐射型器件,有可能实现大型平面显示。由于薄膜技术的发展于1974年已经报导了高亮度、长寿命的双绝缘结构的器件。目前黄橙色的显示板已经实现了商品化,但还存在驱动电压高达200V左右,容易受环境光影响的缺点。最近为了克服这种  相似文献   

6.
引言为实现高质量全色显示,使用稀土掺杂的碱土硫化物作为发光层的薄膜EL器件一直是大量研究工作的主要课题。Eu掺杂的CaS作为高亮度红色EL荧光体一直为人们所关注,它可以取代常规的ZnS:Sm红色荧光体。本文论述了使用新开发的CaS_(1-x)Se_x:Eu发光层的发射红光EL器件,这种发光  相似文献   

7.
一引言近十年来,经细致的研究后,ZnS:Mn电致发光(EL)薄膜器件已经达到实用阶段。但ZnS:Mn荧光体只能给出橙黄色辐射光。最近,人们集中于彩色EL器件的研究,如绿色 ZnS:Tb,F_(?)蓝色SrS:Ce和红色CaS:Eu。它们当中,绿色ZnS:Tb,F薄膜是最突出的,并达到实用水平。ZnS:Tb,F荧光膜最初在1968年由Kahng提出,因这种发光中心是以Tb F_3分子形式掺入,所以称之为分子中心。制备方法是用两个蒸发源,一  相似文献   

8.
近年来,为实现全色平板显示器,人们对薄膜电致发光器件进行了积极的研究。实际应用的最大障碍是缺少蓝色发光器件。作为一种蓝色发光的 EL 器件,人们对 Tm 掺杂的 ZnS 薄膜进行了研究,但是这类器件所能达到的最大发光亮度很低(10—12cd/m~2)其次,ZnS:Tm EL 器件的发光颜色也不合  相似文献   

9.
采用射频反应磁控溅射生长铟锡氧化物(ITO)薄膜,通过X射线衍射(XRD)、透射光谱、四探针法及原子力显微镜(AFM)研究了生长条件、快速热退火(RTA)温度等对薄膜的晶化、透过率、电导率以及表面形貌的影响.以ITO/NPB/AlQ/Al结构的器件为例,讨论了不同的制备条件下ITO薄膜的表面效应对电致发光(EL)的影响,通过EL光谱表征发现,对ITO退火处理后,器件的相对发光强度明显增加,衰减速度减慢,器件的EL光谱有明显的变化.通过进一步分析认为,这是由于ITO薄膜表面的变化引起功函数的改变,从而引起电场重新分布造成的.  相似文献   

10.
本文介绍了高性能有机电致发光(EL)器件,这些器件是由多层有机薄膜构成的。我们把这些器件分成三类,并从发光层电学性能的角度出发优化了 EL 器件的结构。三种 EL 盒中发射区的位置是由掺杂方法确定的。我们还介绍了与高亮度有机 EL 器件有关的两个重要的发光机理。我们认为,发光层内电荷载流子和分子激子的限制使 EL器件具有高亮度。此外,在双异质结构中,在分子尺寸的区域内,有效地实现了对电荷载流子和分子激子的限制。  相似文献   

11.
喻志农 《现代显示》2007,18(3):17-21
薄膜电致发光(thin film electroluminescence,简称TFEL或EL)显示器件,具有全固化、主动发光、重量轻、视角大、反应速度快、使用温度范围广等诸多优点,有着广泛的应用前景。TFEL器件的结构中包括了多种功能薄膜的应用,器件性能的好坏决定于各种功能薄膜的合理选择及其制备工艺。本文对TFEL器件中的功能薄膜进行了介绍。  相似文献   

12.
采用BaTiO_3陶瓷片作为绝缘层,制备出具有金属-绝缘体-半导体(MIS)结构的ZnS:Mn交流薄膜电致发光(EL)器件。我们发现EL特性与介电常数、绝缘陶瓷片的损耗及ZnS:Mn发光层的结晶性能有很密切的关系。制备了具有用金属有机化学气相沉积技术沉积的发光层的EL器件,得到最大亮度为6300cdm~(-1),发光效率为11lmW~(-1)。  相似文献   

13.
电致发光新契机——厚膜介质   总被引:2,自引:0,他引:2  
王成 《光电子技术》1997,17(2):140-143
自从1936年Destriau发现ZnS:Mn电致发光以来,电致发光显示(EL)技术不断发展,商品化的EL产品也层出不穷。其中有交流粉末型、直流粉末型、交流薄膜型和直流薄膜型。所有这些类型的发光器件都有着各自的优、缺点。因而限制了他们在市场中的应用程度。然而,现在EL产品市场出现了一个新变化:厚膜介质电致发光(TDEL)显示及光源应用。  相似文献   

14.
Yamau.  N 田祥 《光电子技术》1989,9(1):52-55,51
引言自从橙黄色(ZnS:Mn)单色薄膜电致发光(TFEL)显示器件达到商业性应用阶段以来,人们把大量的工作都集中于研究彩色TFEL。近年来,三基色TFEL器件的亮度和效率都有了很大的提高。下一个目标就是通过组合基色电致发光来产生多色EL器件。方法有两种:一种是层叠不同颜色的发光薄膜;另一种是拼排不同颜色的发光薄膜单元(拼元式)。  相似文献   

15.
具有多层薄膜结构,发射鲜蓝色光的有机电致发光(EL)器件已经制成并为选择蓝色发光材料制定了二个经验性指南。要获到具有高 EL 效率的 EL 器件,关键是发射层要有优异的成膜能力以及发射极与载流子输运材料的适当组合,避免形成激态复合物。在我们的有机电致发光器件中,有一个器件在电流密度为100mA/cm~2,直流驱动电压为10V 时,蓝光发射亮度达700cd/m~2。  相似文献   

16.
一种新结构中ZnSe薄膜电致发光特性研究   总被引:1,自引:0,他引:1  
用电子束蒸发的方法制备了一种新的ITO/SiO2/ZnSe/SiO2/Al薄膜电致(TFEL)发光器件。在交流电压驱动下,其有2个发光峰,分别位于466nm和560nm。通过研究器件(PL)激发(PLE)谱、光致发光、EL发光以及EL发光强度随驱动电压和频率的变化发现,器件的发光来源于ZnSe的带边发射和自激活发光中心。器件的发光机理与一般的无机电致发光有所不同。这里,SiO2作为电子加速层,ZnSe作为发光层,电子在SiO2层中的高电场作用下被加速到很高的能量,然后直接碰撞激发ZnSe分子使其发光。这种发光现象被称为固态类阴极发光。  相似文献   

17.
有机薄膜 EL 器件有可能实现大屏幕显并因而受到人们的重视。对于此种材料,发光层内空穴与电子的复合激发了发光材料,因而产生 EL。Tang 等人首先报导了使用空穴输运层将空穴由电极注入到发光层内的方法,采用此种方法可将驱动电压降至几伏。这种器件是有机空穴输运层和发光电子  相似文献   

18.
采用低压-金属有机化学气相沉积法(LP-MOCVD)在(100)p-Si衬底上制备未掺杂n型ZnO薄膜,并制作了相应的n-ZnO/p-Si异质结器件.通过X射线衍射(XRD)、光致发光(PL)光谱和霍尔测试分别研究了所制备薄膜的结构、光学和电学特性.得到具有较高质量的n型ZnO薄膜.在室温条件下,测得了该类异质结器件正向注入电流下可见光和近红外区域的电致发光(EL).  相似文献   

19.
引言双绝缘层薄膜电致发光(EL)器件具有高亮度、高分辨率,且可寻址面积大,所以用其作平板显示已引起人们注意。重要的是EL显示器要有高的亮度与电压比。也就是说,在大尺寸的EL显示器中,为了得到清晰的图象和字符,B-V曲线对于防止交叉效应至关重要。在发光层两边淀积低电阻率  相似文献   

20.
制备了具有多层有机薄膜的电致发光(EL)器件。其基本结构由一个空穴输运层和一个发光层构成。空穴输运层为非晶二胺膜。在该层中,唯一可迁移的载流子是空穴。发光层由基质材料8-羟基喹啉铝(Al_q)构成,该层主要输运电子。在低于10V的电压驱动下可获得较强的光输出。与未掺杂的器件相比,在Al_q层中掺入具有强荧光的分子可以使器件的EI效率提高近2倍。具有代表性的掺杂物是香豆素(Coumarin)和DCM。掺杂器件的EL量子效率约为2.5%光子/电子。选择不同的掺杂物以及改变掺杂物的浓度可以容易地把EL器件的颜色从蓝绿调节到橙红区。在掺杂体系中,电子空穴复合和辐射区能被限制在距空穴输运界面50附近。在未掺杂的Al_q器件中,激子的扩散使其EL辐射区变得很大。多层掺杂的EL器件提供了一种直接测量激子扩散长度的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号