首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin film microstructure and its properties can be effectively altered with post deposition heat treatments. In this respect, CdTe thin films were deposited on glass substrates at a substrate temperature of 200 °C using thermal evaporation technique, followed by air annealing at different temperatures from 200 to 500 °C. Structural analysis reveals that CdTe thin films have a cubic zincblend structure with two oxide phases related to CdTe2O5 and CdTeO3 at annealing temperature of 400 and 500 °C respectively. Regardless of the annealing temperature, the plane (111) was found to be the preferred orientation for all films. The crystallite size was observed to increase with annealing temperature. All films were found to display higher lattice parameters than the standard, and hence found to carry a compressive stress. Optical measurements suggest high uniformity of films both before and after post deposition heat treatment. Films annealed at 400 °C displayed superior optical properties due to its high refractive index, optical conductivity, relative density and low disorder. Furthermore, according to the compositional measurements, CdTe thin films were found to exhibit Te rich and Cd rich nature at regions near the substrate and center of the film respectively, for all annealing temperatures. However, composition of the regions near the substrate was found to become more Te rich with increasing annealing temperature. The study suggests that changing the annealing temperature as a post deposition treatment affects structural and optical properties of CdTe thin film as well as its composition. According to the observations, films annealed at 400 °C can be concluded to be the best films for photovoltaic applications due to its superior optical and structural properties.  相似文献   

2.
Thin films of Se87.5Te10Sn2.5 were prepared by vacuum thermal evaporation technique. Various optical constants were calculated for the studied composition. The mechanism of the optical absorption follows the rule of direct transition. It was found that the optical energy gap (Eg) decreases from 2.26 to 1.79 eV with increasing the annealing temperature from 340 to 450 K. This result can be interpreted by the Davis and Mott model. On the other hand, the maximum value of the refractive index (n) is shifted towards the long wavelength by increasing the annealing temperature. In addition, the high frequency dielectric constant (εL) increased from 31.26 to 48.11 whereas the ratio of the free carriers concentration to its effective of mass N/m decreased from 4.3 to 2.09 (×1057 (m−3 Kg−1)). The influence of annealed temperature on the structure was studied by using the X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD studies show that the as-deposited films are amorphous in nature, but the crystallinity improved with increasing the annealing temperature. Furthermore the particle size and crystallinity increased whereas the dislocation and strains decreased with increasing the annealing temperature. SEM examination showed that the annealing temperature induced changes in the morphology of the as-deposited film.  相似文献   

3.
0.94(Na0.5Bi0.5)TiO3–0.06BaTiO3 (NBT–BT6) ferroelectric thin films have been fabricated on Pt–Ti–SiO2–Si(100) substrate by metal–organic decomposition. The effects of annealing temperature (650–800°C) on the microstructure, and the piezoelectric, ferroelectric, and dielectric properties of the thin films were studied in detail. The residual stress was evaluated by the orientation average method to clarify its dependence on annealing temperature and grain size, and it was correlated with the electric properties to understand the mechanism of piezoelectric enhancement. Among the thin films, NBT–BT6 thin film annealed at 750°C has the largest effective piezoelectric coefficient, 95.1 pm/V, remnant polarization, 49.7 μC/cm2, spontaneous polarization, 105.2 μC/cm2, and dielectric constant, 504, and the lowest dielectric loss, 0.05, and tensile residual stress, 24.5 MPa. For the NBT–BT6 thin film annealed at 750°C, a wide temperature range, 183–210°C, around the phase transition temperature (T m) was observed in the dielectric temperature plots, and the diffusion coefficients (γ) were quantitatively assessed as 1.6, 1.78, and 1.6. Piezoelectric performance is discussed on the basis of the dispersion phase transition and residual stress.  相似文献   

4.
In this work, Cu2ZnSnS4 (CZTS) thin films were prepared by the sulfurization of metal precursors deposited sequentially via radio frequency magnetron sputtering on Mo-coated soda-lime glass. The stack order of the precursors was Mo/Zn/Sn/Cu. Sputtered precursors were annealed in sulfur atmosphere with nine different conditions to study the impact of sulfurization time and substrate temperature on the structural, morphological, and optical properties of the final CZTS films. X-ray fluorescence was used to determine the elemental composition ratio of the metal precursors. Final CZTS films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). XRD and EDS were combined to investigate the films’ structure and to identify the presence of secondary phases. XRD analysis indicated an improvement in film crystallinity with an increase of the substrate temperature and annealing times. Also indicated was the minimization and/or elimination of secondary phases when the films experienced longer annealing time. EDS revealed slight Sn loss in films sulfurized at 550°C; however, an increase of the sulfurization temperature to 600°C did not confirm these results. SEM study showed that films treated with higher temperatures exhibited dense morphology, indicating the completion of the sulfurization process. The estimated absorption coefficient was on the order of 104 cm?1 for all CZTS films, and the values obtained for the optical bandgap energy of the films were between 1.33 eV and 1.52 eV.  相似文献   

5.
The effects of high temperature annealing in N2 and H2 ambients upon the following properties of MNOS devices have been investigated: Si-nitride stress, etch rate, index of refraction, fixed interface charge and fast surface state density, memory window and charge retention at elevated temperatures. The CVD Si-nitride and Si-oxynitride films were deposited at temperatures as low as 610°C with a NH3/SiH4 ratio of 1000:1, the heat treatments were performed in the temperature range from 640°C to 1130°C. A similar N2-annealing behavior was found for film stress and flatband voltage. The film stress increased with increasing annealing time and temperature while the interface charge density changed from high positive values (QN/q = 4 × 1012cm2) after nitride deposition at 610°C to high negative values (QN/q = -4 × 1012cm2) after annealing at 930°C, The fast interface state density increased while the charge retention time was drastically reduced. The changes of the properties by N2 annealing are mainly attributed to decomposition of SiH and NH bonds. Minor effects were obtained by annealing in H2 and the drastic changes caused by N2 annealing could be reversed to a great extent by subsequent H2 annealing. Finally the different effects of deposition and annealing temperature on the propertiesare discussed .  相似文献   

6.
The transport and optical properties of phosphorus-doped (Zn,Mg)O thin films grown via pulsed laser deposition (PLD) are studied. The carrier type of as-deposited (Zn,Mg)O:P films converts from n-type to p-type with increasing oxygen partial pressure. All the films exhibit good crystallinity with c-axis orientation. This result indicates the importance of oxidation conditions in realizing p-type (Zn,Mg)O:P films. The as-deposited ZnO:P film properties show a strong dependence on the deposition ambient at different growth temperatures. The resistivity of the samples deposited in O3/O2 mixture is two orders of magnitude higher than the films grown in oxygen and O2/Ar/H2 mixture. The room-temperature photoluminescence (PL) of the as-deposited films has been shown that growing in the O2/Ar/H2 mixture ambient significantly increases the band edge emission while inhibiting the visible emission. The enhanced ultraviolet (UV) emission in the films grown in O2/Ar/H2 mixture may result from hydrogen passivation of the deep level emission centers. The annealed ZnO:P films are n-type with nonlinear dependence of resistivity on annealing temperature. The resistivity increases in the films with annealing at 800°C while decreasing with further increasing annealing temperature. Strong visible light emission is observed from the ZnO:P films annealed in oxygen.  相似文献   

7.
The thermal decomposition of chemically deposited SnS thin films to SnO2 films by air annealing at temperatures up to 400°C is discussed. The conversion of a 0.7 μm thick SnS thin film to an SnO2 film involves the creation of non-stoichiometric SnS, SnS + SnS2 mixed phase and non-stoichiometric SnO2 (i.e. SnO2 ? x), as concluded from X-ray diffraction patterns, optical transmission spectra and electrical characteristics. The SnO2 thin films obtained in this manner are photoconductive, with a lowest sheet resistance (in the dark) of about 105 Ω/□ and an activation energy (Ea) of 0.1 eV for the electrical conductivity observed for the SnS films annealed at 325°C. This was found as the onset temperature for conversion of the SnS + SnS2 phase to the non-stoichiometric SnO2 – x film. Elevation of the annealing temperature to 400°C results in an elevation of the sheet resistance to about 109 Ω/□ with the value of Ea at 1.3 eV, indicating an improvement in the degree of stoichiometry.  相似文献   

8.
Cadmium sulfide (CdS) is one of the most widely used materials as a window layer in heterojunction thin film solar cells. Sputtering method for the preparation of CdS thin film was employed for the mass-production of large-area deposited CdS thin films. The electrical and optical properties of sputter-deposited CdS thin films varied with the annealing temperature, which were caused by changes in phase composition, grain size, and stoichiometry of CdS thin films. The improved optical transmittance of 72.25% (at average thickness of 843.93 nm) and the optical band gap energy of 2.43 eV were obtained at the optimum annealing temperature of 400 °C. The resistivity below 103-order Ω cm and carrier concentration above 1016 carriers/cm3 are suitable for the requirements of window layers at this optimum annealing temperature.  相似文献   

9.
Cu2ZnSnS4 (CZTS) is made of earth abundant elements and also have suitable optical properties for solar cell applications. But, in phase diagram, CZTS exists in a narrow range of temperature and composition. Therefore, optimizing the elemental composition and annealing time is very important for obtaining phase pure CZTS. In this study, the effects of elemental composition and short annealing time on the structural and optical properties of reactively sputtered CZTS thin films are reported. Thin films were deposited by reactive sputtering of Cu: Sn (60:40 wt%), Sn and Zn targets sequentially in the presence of H2S at room temperature. Amount of Zn precursor was varied by changing the sputter time for Zn. The films were rapidly annealed in inert atmosphere for varying time. The band gap of sample changed with change in the composition as well as annealing time. Sample with higher Zn content showed better crystallinity. With increase in the annealing time the crystallinity of samples improved. Sample annealed for 12 min at 550 °C was phase pure. Obtaining good quality film even for very short anneal time is the novelty of reactive sputtering method as all the elements are already mixed and short annealing is required only for crystal growth. Through detailed experiments, the optimum composition and annealing time required for the growth of phase pure CZTS has been established.  相似文献   

10.
The microstructure of the Pt/Ti/SiO2/Si structure has been investigated by scanning and transmission electron microscopy. Pt films of 100 nm thickness deposited by sputtering or evaporation onto unheated substrates gave complete coverage of the underlying Ti layer and showed a granular and faceted structure with grains ∼20 nm in diameter. They did not exhibit hillocks or surface TiOx formation. X-ray diffraction was used to examine the film stress through use of the sin2ψ method with bulk values for the elastic constants (v=0.39, E=162 GPa). The as-deposited sputtered film had a compressive stress of ∼540 MPa, while the evaporated films had tensile stresses of ∼630 MPa. The films then received a 400°C rapid thermal anneal (RTA) for 90 s and a subsequent RTA of 650°C for 30s. Further investigation of the film stresses and microstructure were made after each annealing step. After the low temperature anneal, the film stress for the sputtered film became tensile. Plan-view sections examined by transmission electron microscopy (TEM) showed that the as-deposited sputtered films were dense but became porous after annealing. Initially, the evaporated films had a less dense microstructure, but were more stable with annealing. Little change in the stress for the evaporated film was observed after this initial low temperature annealing step. Additional annealing of the evaporated and sputtered samples caused complete consumption of the Ti layer including some TiOx formation from the underlying SiO2 layer and marked interaction with the Pt; however, little change in the stress was found. The surface of the Pt film revealed larger grains, but otherwise remained unaffected. The underlying phase changes were minimized once the Ti layer had reacted with the Pt. Due to the ratio of the layers, Pt:Ti of 2:1, the surface of the Pt was unaffected.  相似文献   

11.
Structural, electrical, and optical properties of undoped and Zn doped lead sulfide (PbS) thin films are benign reported in this paper. The subjected films were grown on glass substrates at 25 °C by a chemical bath deposition (CBD) method. The concentration of Zn in the deposition bath represented by the ratio [Zn2+]/[Pb2+] was varied from 0% to 5%. It was found that the film׳s grains decreased in size with increasing Zn content in the film. XRD data showed the polycrystalline nature of the film its crystal orientation peak intensities decreased with higher doping concentration of Zn. Atomic force microscopy (AFM) measurements revealed that the surface roughness of the films decreased due to zinc doping as well. However, with increasing of the dopant concentration from 0% to 5%, the average transmittance of the films varied over the range of 35–75%. The estimated optical band (Eg) gaps of undoped and Zn doped PbS thin films were in the range of 0.72–1.46 eV. Hall Effect measurements electrical resistivity, carrier concentration and Hall mobility have been determined for the titled film as functions on the Zn content within the film׳s textures. The overall result of this work suggested that the Zn:PbS film is a good candidate as an absorber layer in the modern solar cell devices.  相似文献   

12.
Low-temperature (∼400 °C) metal-induced crystallization of hydrogenated amorphous Si0.5Ge0.5 thin films using Au solution has been investigated by X-ray diffraction, Raman spectra, scanning electron microscopy and atomic force microscopy. It was shown that Au solution significantly promotes the crystallization of the films at low temperatures. The effects of annealing temperature and concentration of the Au solution on the structure and morphology of the films were analyzed. The increase in crystallinity was observed with increasing the annealing temperature. The Raman shifts of Ge–Ge and Si–Ge peaks with the annealing temperature were also discussed.  相似文献   

13.
Nanoporous thin films of Cd1−xCuxS (0≤x≤0.06) were grown on a heated glass substrate employing a home-made spray pyrolysis technique. The influences of [Cu]/[Cd] and the annealing in the range 300–500 °C on the structural and morphological properties of the films were investigated by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), field emission scanning electron microscope (FE-SEM) and atomic force microscopy (AFM). The influences of Cu doping ratio, solution flow rate, and the deposition time on the optical properties and photocatalytic activity of these films are also reported. The films are of polycrystalline nature and hexagonal structure. Increasing the Cu doping ratio and annealing temperature improve the (1 0 1) preferential orientation. The crystallite size is ranged from 23.82 to 32.11 nm. XRD and FTIR reveal the formation of CdO in the 6% Cu-doped CdS film annealed at 400 °C and in all films annealed at 500 °C. The pure CdS film is of a porous structure and the close-packing and porosity of the films increase with increasing Cu%. Also, the pore diameter can be controlled from 50 to 15 nm with the increase of Cu content. The films showed transmittance below 70%. The optical band gap of the films is decreased from 2.43 to 1.82 eV with increasing Cu% and flow rate/deposition time. Additionally, the refractive indices and dispersion parameters of the films are also affected by the deposition conditions. Cu doping enhanced the films' photostability as well as the photocatalytic removal of methylene blue (MB).  相似文献   

14.
Low-temperature (LT) growth of In0.47Ga0.53P was carried out in the temperature range from 200 to 260°C by gas source molecular beam epitaxy using solid Ga and In and precracked PH3. The Hall measurements of the as-grown film showed a resistivity of ∼106 Ω-cm at room temperature whereas the annealed film (at 600°C for 1 h) had at least three orders of magnitude higher resistivity. The Hall measurements, also, indicated activation energies of ∼0.5 and 0.8 eV for the asgrown and annealed samples, respectively. Double-crystal x-ray diffraction showed that the LT-InGaP films had ∼47% In composition. The angular separation, Δθ, between the GaAs substrate and the as-grown LT-InGaP film on (004) reflection was increased by 20 arc-s after annealing. In order to better understand the annealing effect, a LT-InGaP film was grown on an InGaP film grown at 480°C. While annealing did not have any effect on the HT-InGaP peak position, the LT-InGaP peak was shifted toward the HT-InGaP peak, indicating a decrease in the LT-InGaP lattice parameter. Cross-sectional transmission electron microscopy indicates the presence of phase separation in LT-InGaP films, manifested in the form of a “precipitate-like” microstructure. The analytical scanning transmission electron microscopy analysis of the LT-InGaP film revealed a group-V nonstoichiometric deviation of ∼0.5 at.% P. To our knowledge, this is the first report about the growth and characterization of LT-InGaP films.  相似文献   

15.
江凯  李远洁 《半导体光电》2014,35(3):464-467,471
采用RF磁控溅射法在石英玻璃上制备了InGaZnO薄膜,并对薄膜进行了真空退火实验,探讨了沉积过程中氧气流量及真空退火温度对薄膜的光学性质和电学性质的影响及其机理。测试结果表明薄膜的光透过率随氧气流的增加而增大,且当氧气流大于1cm3/min时,薄膜呈现出不导电性,在通入的氧气流为0.5cm3/min时迁移率达11.9cm2/(V·s)。经过真空退火后,氧气流小于1.5cm3/min时薄膜载流子浓度随退火温度的变化而变化;氧气流大于1.5cm3/min时样品由半绝缘性转变为半导电性。生长样品和退火样品均为n型半导体。  相似文献   

16.
High quality BaWO4 thin films are successfully deposited on quartz substrate for a duration of 30 min using pulsed laser ablation technique and using a laser radiation of wavelength 355 nm and the effect of thermal annealing on the structural and optical properties is studied by using techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy, micro-Raman, FTIR and UV–visible spectroscopy. All the films show monoclinic crystalline structure with (2 0 2) plane as the preferred orientation of crystal growth. From the XRD analysis it is found that the optimum annealing temperature for better crystallization of the BaWO4 film is 700 °C and there is no phase change observed with annealing temperature. The presence of the characteristic bands for the BaWO4 in the Raman spectra of the films suggests the formation of BaWO4 crystalline phase in all the films. SEM and AFM analyses show that as the annealing temperature increases the connectivity between individual grains increases and shows an ordered packing. The geometrical optimization and energy calculation of the title compound were done using the Gaussian 09 software package and the calculations were carried out using the CAM-B3LYP functional combined with standard Lanl2Dz basis set. The thickness of the films was calculated using lateral SEM images and also from optical transmission spectral data using PUMA software.  相似文献   

17.
The present communication reports the effect of thermal annealing on the physical properties of In2S3 thin films for eco-friendly buffer layer photovoltaic applications. The thin films of thickness 150 nm were deposited on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing in air atmosphere within a low temperature range 150–450 °C. These as-deposited and annealed films were subjected to the X-ray diffraction (XRD), UV–vis spectrophotometer, current–voltage tests and scanning electron microscopy (SEM) for structural, optical, electrical and surface morphological analysis respectively. The compositional analysis of as-deposited film is also carried out using energy dispersive spectroscopy (EDS). The XRD patterns reveal that the as-deposited and annealed films (≤300 °C) have amorphous nature while films annealed at 450 °C show tetragonal phase of β-In2S3 with preferred orientation (109) and polycrystalline in nature. The crystallographic parameters like lattice constant, inter-planner spacing, grain size, internal strain, dislocation density and number of crystallites per unit area are calculated for thermally annealed (450 °C) thin films. The optical band gap was found in the range 2.84–3.04 eV and observed to increase with annealing temperature. The current–voltage characteristics show that the as-deposited and annealed films exhibit linear ohmic behavior. The SEM studies show that the as-deposited and annealed films are uniform, homogeneous and free from crystal defects and voids. The grains in the thin films are similar in size and densely packed and observed to increase with thermal annealing. The experimental results reveal that the thermal annealing play significant role in the structural, optical, electrical and morphological properties of deposited In2S3 thin films and may be used as cadmium-free eco-friendly buffer layer for thin films solar cells applications.  相似文献   

18.
ZnO nanopolycrystalline thin films were deposited by the sol–gel technique on glass and silicon, and compared systematically via atomic force microscopy, scanning electron microscopy, x-ray diffraction, UV–Vis spectrophotometry, and fluorescence spectrophotometry. The thickness of the ZnO films was measured by ellipsometric microscopy. A higher preheating temperature was needed to obtain films with a strong preferential orientation. The optimal annealing temperatures for c-axis films on glass and silicon substrates were 525°C and 750°C, respectively. The relative intensity of the blue–green emission peak tends to increase with the annealing temperature. When the film is annealed in N2, the transmittance of the film reduces while the intensity of the blue–green emission increases.  相似文献   

19.
The mechanical stress caused by Si3N4 films on (111) oriented Si wafers was studied as a function of the Si3N4 film thickness, deposition rate, deposition temperature and film composition. The Si3N4 films were prepared by the reaction of gaseous SiH4 and NH3 in the temperature range 700–1000°C. The curvature of the Si substrates caused by the Si3N4. films is related to the film stress; the substrate curvature was measured by an optical interference technique. The measured Si3N4. film stress was found to be highly tensile with a magnitude of about 1010 dynes/cm2. For the thickness range of 2000–5000Å, there was no change in the measured stress. The total film stress was observed to decrease for decreasing deposition rate and increasing deposition temperature. A large change in film stress was observed for films containing excess Si; the stress decreased with increasing Si content. Based on published values for the thermal expansion coefficients for Si and Si3N4, a published value for Young’s Modulus for Si3N4, and the measured total stress values, a consistent argument is developed in which the total stress consists of a compressive component due to thermal expansion coefficient mismatch and a larger tensile intrinsic stress component. Both the thermal and intrinsic stress components vary with film deposition temperature in directions which decrease the total room temperature stress for higher deposition temperatures.  相似文献   

20.
(Ba1−xSrx)TiO3 (1−x=0.8, 0.7, 0.6 and 0.5) thin films were prepared on (0 0 1) LaAlO3 substrates by sol–gel method. The films were found to be crystallized in preferential (0 0 1) orientation after post-deposition annealing at 750°C for 1.5 h and 1100°C for 2 h in air, respectively. We investigated the dependence of tunability and dissipation factor on annealing temperature and different Ba/Sr ratios. It was found that the tunability increased dramatically and dissipation factor decreased obviously with increasing annealing temperature, and Ba0.6Sr0.4TiO3 thin films annealed at 1100°C for 2 h have a tunability of 46.9% at 80 kV/cm bias filed and a dissipation factor of 0.008 at 1 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号