首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The advances in the size, cost of deployment, and user‐friendly interface of wireless sensor devices have given rise to many wireless sensor network (WSN) applications. WSNs need to use protocols for transmitting data samples from event regions to sink through minimum cost links. Clustering is a commonly used method of data aggregation in which nodes are organized into groups to reduce energy consumption. Nonetheless, cluster head (CH) has to bear an additional load in clustering protocols to organize different activities within the cluster. Proper CH selection and load balancing using efficient routing protocol is therefore a critical aspect for WSN's long‐term operation. In this paper, a threshold‐sensitive energy‐efficient cluster‐based routing protocol based on flower pollination algorithm (FPA) is proposed to extend the network's stability period. Using FPA, multihop communication between CHs and base station is used to achieve optimal link costs for load balancing distant CHs and energy minimization. Analysis and simulation results show that the proposed algorithm significantly outperforms competitive clustering algorithms in terms of energy consumption, stability period, and system lifetime.  相似文献   

2.

Wireless sensor networks (WSNs) have grown excessively due to their various applications and low installation cost. In WSN, the main concern is to reduce energy consumption among nodes while maintaining timely and reliable data forwarding. However, most of the existing energy aware routing protocols incur unbalanced energy consumption, which results in inefficient load balancing and compromised network lifetime. Therefore, the main target of this research paper is to present adaptive energy aware cluster-based routing (AECR) protocol for improving energy conservation and data delivery performance. Our proposed AECR protocol differs from other energy efficient routing schemes in some aspects. Firstly, it generates balance sized clusters based on nodes distribution and avoids random clusters formation. Secondly, it optimizes both intra-cluster and inter-cluster routing paths for improving data delivery performance while balancing data traffic on constructed forwarding routes and at the end, in order to reduce the excessive energy consumption and improving load distribution, the role of Cluster Head (CH) is shifted dynamically among nodes by exploit of network conditions. Simulation results demonstrate that AECR protocol outperforms state of the art in terms of various performance metrics.

  相似文献   

3.
针对无线传感器网络节点能量有限、负载不均衡的问题,提出了一种基于粒子群优化模糊C均值的分簇路由算法POFCA。POFCA分别从成簇阶段和数据传输阶段进行了优化。成簇阶段,首先使用粒子群优化算法优化模糊C均值算法,克服了模糊C均值对初始聚类中心的敏感,并根据节点剩余能量和相对距离动态更新簇首,平衡簇内负载。数据传输阶段,基于距离因子、能量因子和节点负载设计了路径评价函数,并使用猫群优化算法为簇首搜寻最优路由路径,在平衡簇首负载的同时又不会加剧中继节点负载。仿真结果表明,与LEACH和LEACH-improved算法相比,POFCA能有效地平衡网络负载,降低网络能耗,延长网络生命周期。  相似文献   

4.
孙振  王凯  王亚刚 《电子科技》2019,32(8):27-32
为平衡无线传感器网络中的簇头负载并进一步降低多跳传输能耗,文中提出了一种改进的基于时间竞争成簇的路由算法。该算法通过限制近基站节点成簇入簇,以防止近基站节点成簇入簇的节能收益无法补偿成簇入簇能耗;利用基站广播公共信息和基于时间机制成簇,以减少节点基本信息交换能耗;通过候选簇头中继来平衡簇头负载。候选簇头的评价函数综合考虑了剩余能量和最优跳数的理想路径,以期在保持中继负载平衡的基础上尽量降低多跳能耗。仿真结果显示,该算法较LEACH和DEBUC算法延长了以30%节点死亡为网络失效的网络生存周期,表明该算法在降低节点能耗和平衡负载方面是有效的。  相似文献   

5.
针对传统的层次型网络存在的分簇不合理和能耗不均衡等问题,提出了一种基于能量和密度的动态非均匀分区成簇路由算法。该算法先根据节点与基站之间的距离将网络合理地进行动态的区域划分,在区域内成簇,使靠近基站的簇规模小于距离基站较远的簇,减少靠近基站的簇首负担和能量消耗;通过综合考虑节点剩余能量和节点密度等因素来优化簇的非均匀划分和簇首的选择,簇首间采取基于数据聚合的多跳传输机制。仿真结果表明,与经典路由算法LEACH相比,该算法能有效均衡节点能耗,延长网络生命周期。  相似文献   

6.
针对非均匀分布的无线传感网的生存时间问题,提出多簇无线传感网的优化生存时间近邻功率控制(NPCAOL_MC)算法。该算法采用K-means算法确定网络的簇个数和对应每个簇的节点,利用近邻算法评估每个簇的节点密度,确定簇的最优通信距离。结合Friss自由空间模型计算当前簇的最优发送功率。Sink节点广播通知其他节点,如果是同一簇内的节点相互通信,则采用簇最优功率发送数据,否则采用默认最大发送功率发送数据。仿真结果表明,利用NPCAOL_MC算法可以分析整个网络节点的位置信息,采用簇最优发送功率发送数据,从而提高生存时间,并使能耗经济有效。在密度分布不均的无线传感网中,NPCAOL_MC比采用固定发送功率的Ratio_w算法更优。  相似文献   

7.
Balancing the load among sensor nodes is a major challenge for the long run operation of wireless sensor networks. When a sensor node becomes overloaded, the likelihood of higher latency, energy loss, and congestion becomes high. In this paper, we propose an optimal load balanced clustering for hierarchical cluster‐based wireless sensor networks. We formulate the network design problem as mixed‐integer linear programming. Our contribution is 3‐fold: First, we propose an energy aware cluster head selection model for optimal cluster head selection. Then we propose a delay and energy‐aware routing model for optimal inter‐cluster communication. Finally, we propose an equal traffic for energy efficient clustering for optimal load balanced clustering. We consider the worst case scenario, where all nodes have the same capability and where there are no ways to use mobile sinks or add some powerful nodes as gateways. Thus, our models perform load balancing and maximize network lifetime with no need for special node capabilities such as mobility or heterogeneity or pre‐deployment, which would greatly simplify the problem. We show that the proposed models not only increase network lifetime but also minimize latency between sensor nodes. Numerical results show that energy consumption can be effectively balanced among sensor nodes, and stability period can be greatly extended using our models.  相似文献   

8.
任克强  余建华  谢斌 《电视技术》2015,39(13):69-72
为了降低无线传感器网络(WSN)的能耗,延长网络的生存周期,提出一种多簇头双工作模式的分簇路由算法.算法对低功耗自适应集簇分层(LEACH)协议作了以下改进:采用多簇头双工作模式来分担单簇头的负荷,以解决单簇头因能耗较大而过早消亡的问题;选举簇头时充分考虑节点位置和节点剩余能量,并应用粒子群优化(PSO)算法优化簇头的选举,以均衡网络内各节点的能耗;建立簇与簇之间的数据传输路由,以减少簇间通信的能耗.仿真结果表明,算法有效降低了网络的能耗,延长了网络的生存周期.  相似文献   

9.
The growth of the World Wide Web and web‐based applications is creating demand for high performance web servers to offer better throughput and shorter user‐perceived latency. This demand leads to widely used cluster‐based web servers in the Internet infrastructure. Load balancing algorithms play an important role in boosting the performance of cluster web servers. Previous load balancing algorithms suffer a significant performance drop under dynamic and database‐driven workloads. We propose an estimation‐based load balancing algorithm with admission control for cluster‐based web servers. Because it is difficult to accurately determine the load of web servers, we propose an approximate policy. The algorithm classifies requests based on their service times and tracks the number of outstanding requests from each class in each web server node to dynamically estimate each web server load state. The available capacity of each web server is then computed and used for the load balancing and admission control decisions. The implementation results confirm that the proposed scheme improves both the mean response time and the throughput of clusters compared to rival load balancing algorithms and prevents clusters being overloaded even when request rates are beyond the cluster capacity.  相似文献   

10.
Wireless sensor networks (WSNs) need simple and effective approaches to reduce energy consumption because of limited energy. Clustering nodes is an effective approach to make WSNs energy-efficient. In this paper we propose a distributed multi-competitive clustering approach (DMCC) for WSNs. First, the nodes with high residual energy are selected to act as cluster head candidates (CHCs). Second, cluster heads (CHs) are selected from the CHCs based on a hybrid of competition. If the distances to the selected CHs are suitable, a CHC with more neighbor nodes and smaller average distance to its neighbor nodes is more likely to become a CH. If the number of CHs selected from the CHCs is insufficient, more CHs are selected from non-CHCs continually according to residual energy until the CHs number is suitable. DMCC makes the CHs number stable and distribute the CHs evenly. Simulation experiments were performed on to compare DMCC with some related clustering approaches. The experimental results suggest that DMCC balances the load among different clusters and reduces the energy consumption, which improves the network lifetime.  相似文献   

11.
In wireless sensor networks (WSNs), clustering can significantly reduce energy dissipation of nodes, and also increase communication load of cluster heads. When multi-hop communication model is adopted in clustering, “energy hole” problem may occur due to unbalanced energy consumption among cluster heads. Recently, many multi-hop clustering protocols have been proposed to solve this problem. And the main way is using unequal clustering to control the size of clusters. However, many of these protocols are about homogeneous networks and few are about heterogeneous networks. In this paper, we present an unequal cluster-based routing scheme for WSNs with multi-level energy heterogeneity called UCR-H. The sensor field is partitioned into a number of equal-size rectangular units. We first calculate the number of clusters in each unit by balancing energy consumption among the cluster heads in different units. And then we find the optimal number of units by minimizing the total energy consumption of inter-cluster forwarding. Finally, the size of clusters in each unit is elaborately designed based on node’s energy level and the number of clusters in this unit. And a threshold is also designed to avoid excessive punishment to the nodes with higher energy level. Simulation results show that our scheme effectively mitigates the “energy hole” problem and achieves an obvious improvement on the network lifetime.  相似文献   

12.
季薇  郑宝玉 《信号处理》2011,27(3):321-327
无线通信的能耗主要由功放能耗和电路能耗两部分组成。在大距离传输中,通信能耗由功放能耗主导,电路能耗往往被忽略不计。而在以短距离传输为主的传感器网络中,电路能耗成为不可忽略的一部分,甚至有可能超过功放能耗成为通信能耗的主导。本文就如何通过节点间协作降低网络的通信能耗展开研究,拟解决协作通信中的协作节点配置问题。本文将信源-协作节点间距离纳入协作通信系统模型,提出一种针对调制参数、协作中继数、信源-协作簇距离对协作通信能耗进行联合优化的策略,并在无线传感器网络环境下对该模型的能耗进行了仿真。仿真结果表明,在传输距离一定的情况下,通过协作节点的数量、调制参数和信源-协作簇距离的联合优化配置,可以更有效地提高协作传输的节能效果。   相似文献   

13.

One of the biggest challenges in Wireless Sensor Networks (WSNs) is to efficiently utilise the limited energy available in the network. In most cases, the energy units of sensors cannot be replaced or replenished. Therefore, the need for energy efficient and robust algorithms for load balancing in WSNs is ever present. This need is even more pronounced in the case of cluster-based WSNs, where the Cluster Head (CH) gathers data from its member nodes and transmits this data to the base station or sink. In this paper, we propose a location independent algorithm to cluster the sensor nodes under gateways, as CHs into well defined, load balanced clusters. The location-less aspect also avoids the energy loss in running GPS modules. Simulations of the proposed algorithm are performed and compared with a few existing algorithms. The results show that the proposed algorithm shows better performance under different evaluation metrics such as average energy consumed by sensor nodes vs number of rounds, number of active sensors vs number of rounds, first gateway die and half of the gateways die.

  相似文献   

14.
Nodes deployment is a fundamental factor in determining the connectivity, coverage, lifetime and cost of wireless sensor networks. In this paper, a two-tiered wireless sensor networks consisting of sensor clusters and a base station is considered. Within a sensor cluster, there are many sensor nodes and a relay node. We focus on the deployment strategy for sensor nodes and relay nodes to minimize cost under some constraints. Several means are used. The regular hexagonal cell architecture is employed to build networks. Based on the analysis of energy consumption of sensors and cost of network, an integer programming model is presented to minimize the cost. By the model, number of layers of sensor cluster is determined. In order to balance the energy consumption of sensors on the identical layer, a uniform load routing algorithm is used. The numerical analysis and simulation results show that the waste of energy and cost of wireless sensor networks can be effectively reduced by using the strategy.  相似文献   

15.
Adaptive Low Power Listening for Wireless Sensor Networks   总被引:1,自引:0,他引:1  
Most sensor networks require application-specific network-wide performance guarantees, suggesting the need for global and flexible network optimization. The dynamic and nonuniform local states of individual nodes in sensor networks complicate global optimization. Here, we present a cross-layer framework for optimizing global power consumption and balancing the load in sensor networks through greedy local decisions. Our framework enables each node to use its local and neighborhood state information to adapt its routing and MAC layer behavior. The framework employs a flexible cost function at the routing layer and adaptive duty cycles at the MAC layer in order to adapt a node's behavior to its local state. We identify three state aspects that impact energy consumption: 1) number of descendants in the routing tree, 2) radio duty cycle, and 3) role. We conduct experiments on a test-bed of 14 mica2 sensor nodes to compare the state representations and to evaluate the framework's energy benefits. The experiments show that the degree of load balancing increases for expanded state representations. The experiments also reveal that all state representations in our framework reduce global power consumption in the range of one-third for a time-driven monitoring network and in the range of one-fifth for an event-driven target tracking network.  相似文献   

16.
Designing an energy efficient and durable wireless sensor networks (WSNs) is a key challenge as it personifies potential and reactive functionalities in harsh antagonistic environment at which wired system deployment is completely infeasible. Majority of the clustering mechanisms contributed to the literature concentrated on augmenting network lifetime and energy stability. However, energy consumption incurred by cluster heads (CHs) are high and thereby results in minimized network lifetime and frequent CHs selection. In this paper, a modified whale-dragonfly optimization algorithm and self-adaptive cuckoo search-based clustering strategy (MWIDOA-SACS) is proposed for sustaining energy stability and augment network lifetime. In specific, MWIDOA-SACS is included for exploiting the fitness values that aids in determining two optimal nodes that are selected as optimal CH and cluster router (CR) nodes in the network. In MWIDOA, the search conduct of dragon flies is completely updated through whale optimization algorithm (WOA) for preventing load balancing at CHs. It minimized the overhead of CH by adopting CHs and CR for collecting information from cluster members and transmitting the aggregated data from CHs to the base station (BS). It included self-adaptive cuckoo search (SACS) for achieving sink mobility using radius, energy stability, received signal strength, and throughput for achieving optimal data transmission process after partitioning the network into unequal clusters. Simulation experiments of the proposed MWIDOA-SACS confirmed better performance in terms of total residual energy by 21.28% and network lifetime by 26.32%, compared to the competitive CH selection strategies.  相似文献   

17.
本文提出了能耗高效的非均匀分簇路由协议(EERP).核心为由远及近依次求取各层成簇半径值,使得靠近sink节点的成簇半径小于远离sink节点的成簇半径;以节点剩余能量和相对距离为每个节点确定簇首竞争能力;簇间采用动态路由;依据接收比特值和簇首节点剩余能量发起簇重构.在Omnet++仿真平台下模拟实验结果显示,EERP有效的均衡了全网节点能耗,显著延长了网络生命周期.  相似文献   

18.
Li  Xiao-ru  Jiang  He 《Wireless Personal Communications》2022,125(3):2101-2127

Wireless Sensor Network (WSN) is one of the most significant technologies that typically involves of a large number of wireless sensor nodes with sensing, communications and computation capabilities. The sustained operation of WSN is achieved through the efficient consumption of node energy. The WSN is used to many applications especially military, science and medical. The WSN performance may be affect some issues such as load balancing, security and reduce energy consumption of the nodes. These issues must be reduced to enhance performance of the WSN structure in different applications. Henceforth, in this paper, Hybrid Emperor Penguin Optimization (EPO) is developed to solve load balancing, security enhancement and reduce energy consumption in WSN. The hybrid EPO is combined with Atom Search Optimization (ASO) algorithm, it is used to improve the updating function of the EPO algorithm. Three major objective functions can be considered towards improve the performance of WSN like load balancing, security enhancement in addition energy consumption reduction. The load balancing can be achieved by optimal clustering scheme which attained applying proposed hybrid EPO. The security also enhanced in WSN with the help of hybrid EPO by computing security measures. Similarly, energy consumption of WSN is achieved optimal routing scheme by hybrid EPO algorithm. The proposed methodology is developed to manage three objectives which is a major advantage. The projected technique can be implemented by NS2 simulator for validation process. The projected technology is contrasted with the conventional methods such as EPO and ASO respectively. The projected technique is evaluated in terms of delivery ratio, network lifetime, overhead, energy consumption, throughput, drop and delay.

  相似文献   

19.
Clustering and multi-hop routing algorithms substantially prolong the lifetime of wireless sensor networks (WSNs). However, they also result in the energy hole and network partition problems. In order to balance the load between multiple cluster heads, save the energy consumption of the inter-cluster routing, in this paper, we propose an energy-efficient routing algorithm based on Unequal Clustering Theory and Connected Graph Theory for WSN. The new algorithm optimizes and innovates in two aspects: cluster head election and clusters routing. In cluster head election, we take into consideration the vote-based measure and the transmission power of sensor nodes when to sectionalize these nodes into different unequal clusters. Then we introduce the connected graph theory for inter-cluster data communication in clusters routing. Eventually, a connected graph is constituted by the based station and all cluster heads. Simulation results show that, this new algorithm balances the energy consumption among sensor nodes, relieves the influence of energy-hole problem, improve the link quality, achieves a substantial improvement on reliability and efficiency of data transmission, and significantly prolongs the network lifetime.  相似文献   

20.

Wireless sensor network has special features and many applications, which have attracted attention of many scientists. High energy consumption of these networks, as a drawback, can be reduced by a hierarchical routing algorithm. The proposed algorithm is based on the Low Energy Adaptive Clustering Hierarchy (LEACH) and Quadrant Cluster based LEACH (Q-LEACH) protocols. To reduce energy consumption and provide a more appropriate coverage, the network was divided into several regions and clusters were formed within each region. In selecting the cluster head (CH) in each round, the amount of residual energy and the distance from the center of each node were calculated by the base station (including the location and residual energy of each node) for all living nodes in each region. In this regard, the node with the largest value had the highest priority to be selected as the CH in each network region. The base station calculates the CH due to the lack of energy constraints and is also responsible for informing it throughout the network, which reduces the load consumption and tasks of nodes in the network. The information transfer steps in this protocol are similar to the LEACH protocol stages. To better evaluate the results, the proposed method was implemented with LEACH LEACH-SWDN, and Q-LEACH protocols using MATLAB software. The results showed better performance of the proposed method in network lifetime, first node death time, and the last node death time.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号