首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
介绍了居于小波视频编解码芯片ADV612的远程图像采集器实现,解决了视频数据压缩问题,实现了视频数据采集器的小型化、智能化。  相似文献   

2.
本文简要叙述了东芝MPEG-4编解码芯片TC35273的主要特点,内部结构和相应功能,并介绍了该芯片在可视移动电话中应用的一种方法。  相似文献   

3.
首先简要介绍了光纤电视监控系统中控制信号编解码的基本原理框图,然后比较详细地讨论了所用编解码芯片的特性,最后给出了实现高性能编解码的电路图。  相似文献   

4.
基于FPGA的音频编解码芯片接口设计   总被引:3,自引:0,他引:3  
24位立体声音频编解码芯片WM8731因其高性能、低功耗等优点在很多音频产品中得到了广泛应用.介绍了其基于FPGA的接口电路的设计,包括芯片配置模块与音频数据接口模块等,使得控制器只通过寄存器就可以方便地对其进行操作,而不需要考虑其接口电路复杂的时钟时序问题,从而有效地降低了利用此芯片的难度.整个设计以VHDL和Verilog HDL语言在Max+Plus Ⅱ里实现,并进行了验证,结果表明能满足使用者的要求且操作简单.对其他编解码芯片的接口设计也有一定的参考作用.  相似文献   

5.
简要介绍了TI的定点多媒体处理芯片TMS320DM642的特点、软硬件开发平台及Ogg/Vorbis音频编解码算法。分析了Ogg/Vorbis编解码算法的工作流程,并重点阐述了基于DM642平台的Ogg/Vorbis音频编解码算法的移植。实验结果表明,移植后的Ogg/Vorbis音频编解码算法能够实现音频文件的编解码。  相似文献   

6.
《现代电子技术》2007,30(2):140-140
由于兼具国家支持及市场行为的双重条件,安防芯片被广泛看好,极有可能成为CPU的另一个新领域,而且也有很多厂商在积极运作。日前深圳海思半导体有限公司针对监控、可视对讲等市场推出了安防音视频编解码芯片,海思在安防领域推广的主要是Hi351X系列,其中Hi3510是业内的首颗SoC架构的H.264编解码硬芯片,他的核心就是H.264的编解码算法以及硬件实现。  相似文献   

7.
MB86H51:高清编解码芯片,WM8941:编码解码器。[编者按]  相似文献   

8.
编解码芯片UM3758-108在数字通信接口中的应用湘潭工学院曾昭彭华林钟蕴丽专用编解码芯片UM3758-108属大规模CMOS器件,它集编码发送和接收解码于一身,在编解码电路、控制领域以及保密通信方面有着广泛的应用,把它用作一种新型数字接口,更展现...  相似文献   

9.
ADV611是一种高压缩率(可达7500:1)的专用视频图像压缩/解压缩芯片。本文介绍了ADV611的工作原理、功能特点等,并给出了基于ADV611实现视频图像实时编解码的可选择方案,具体描述了实现高压缩率的方法。  相似文献   

10.
林杰 《电子世界》2007,(12):24-26
<正> 在无线遥控安全系统中,数据通信时通常采用编解码的方式进行加密传输。传统的编解码芯片简单、易用,但编码量少、易重复、密码长度短和仅具有固定编码的方式,从而降低了系统的安全性。本文主要介绍了基于 Keeloq 跳码技术的 NT21××系列解码芯片及其应用方案,结合 Microchip 公司的滚动编码芯片  相似文献   

11.
Three alternative schemes for secure Virtual Private Network (VPN) deployment over the Universal Mobile Telecommunication System (UMTS) are proposed and analyzed. The proposed schemes enable a mobile node to voluntarily establish an IPsec-based secure channel to a private network. The alternative schemes differ in the location where the IPsec functionality is placed within the UMTS network architecture (mobile node, access network, and UMTS network border), depending on the employed security model, and whether data in transit are ever in clear-text, or available to be tapped by outsiders. The provided levels of privacy in the deployed VPN schemes, as well as the employed authentication models are examined. An analysis in terms of cost, complexity, and performance overhead that each method imposes to the underlying network architecture, as well as to the mobile devices is presented. The level of system reliability and scalability in granting security services is presented. The VPN management, usability, and trusted relations, as well as their behavior when a mobile user moves are analyzed. The use of special applications that require access to encapsulated data traffic is explored. Finally, an overall comparison of the proposed schemes from the security and operation point of view summarizes their relative performance. Christos Xenakis received his B.Sc. degree in computer science in 1993 and his M.Sc. degree in telecommunication and computer networks in 1996, both from the Department of Informatics and Telecommunications, University of Athens, Greece. In 2004 he received his Ph.D. from the University of Athens (Department of Informatics and Telecommunications). From 1998–2000 was with the Greek telecoms system development firm Teletel S.A., where was involved in the design and development of advanced telecommunications subsystems for ISDN, ATM, GSM, and GPRS. Since 1996 he has been a member of the Communication Networks Laboratory of the University of Athens. He has participated in numerous projects realized in the context of EU Programs (ACTS, ESPRIT, IST). His research interests are in the field of mobile/wireless networks, security and distributed network management. He is the author of over 15 papers in the above areas. Lazaros Merakos received the Diploma in electrical and mechanical engineering from the National Technical University of Athens, Greece, in 1978, and the M.S. and Ph.D. degrees in electrical engineering from the State University of New York, Buffalo, in 1981 and 1984, respectively. From 1983 to 1986, he was on the faculty of Electrical Engineering and Computer Science at the University of Connecticut, Storrs. From 1986 to 1994 he was on the faculty of the Electrical and Computer Engineering Department at Northeastern University, Boston, MA. During the period 1993–1994 he served as Director of the Communications and Digital Processing Research Center at Northeastern University. During the summers of 1990 and 1991, he was a Visiting Scientist at the IBM T. J. Watson Research Center, Yorktown Heights, NY. In 1994, he joined the faculty of the University of Athens, Athens, Greece, where he is presently a Professor in the Department of Informatics and Telecommunications, and Director of the Communication Networks Laboratory (UoA-CNL) and the Networks Operations and Management Center. His research interests are in the design and performance analysis of broadband networks, and wireless/mobile communication systems and services. He has authored more than 150 papers in the above areas. Since 1995, he is leading the research activities of UoA-CNL in the area of mobile communications, in the framework of the Advanced Communication Technologies & Services (ACTS) and Information Society Technologies (IST) programmes funded by the European Union (projects RAINBOW, Magic WAND, WINE, MOBIVAS, POLOS, ANWIRE). He is chairman of the board of the Greek Universities Network, the Greek Schools Network, and member of the board of the Greek Research Network. In 1994, he received the Guanella Award for the Best Paper presented at the International Zurich Seminar on Mobile Communications.  相似文献   

12.
Global consensus on the next generation of wireless mobile communications, broadly termed “beyond 3G”, sketches a heterogeneous infrastructure comprising different wireless systems in a complementary manner and vested with reconfiguration capabilities, which support a flexible and dynamic adaptation of the wireless network and its spectrum resources to meet the ever-changing service requirements. For ubiquitous reconfiguration to become a practical capability of mobile communication systems, it is necessary to establish a global architecture for modeling, expressing, and circulating essential metadata related to reconfiguration, including reconfigurable device capabilities and semantic properties of protocol stacks. We outline the relevant standardization initiatives in the mobile domain, summarize existing work in reconfiguration-supporting architectures, and identify key shortcomings that may hinder the advent of ubiquitously reconfigurable systems. Further on, we point out some major limitations of current metadata standards in the mobile domain for the representation of capability information pertaining to reconfigurable protocol stacks. Next, we identify essential metadata classes in support of reconfigurable communication systems, introducing an associated object-oriented UML model. We elaborate on the design rationale of the UML model, presenting and discussing the alternative metadata representation standards and suitable encoding formats. Finally, we demonstrate the suitability of our UML model by applying our reconfiguration-supporting vocabulary in the cases of a standardized protocol stack of 3G mobile devices and stationary 3G cellular network elements. Vangelis Gazis received his B.Sc. and M.Sc. (Communication Networking) degrees from the Department of Informatics & Telecommunications of the University of Athens, Greece, in 1995, and 1998, respectively. He also received an M.B.A. degree from the Athens University of Economics and Business in 2001. Since 1996 until, he has been with the research staff of the Communication Networks Laboratory (CNL) of the University of Athens. He has participated in national and European research projects (MOBIVAS, ANWIRE) of the IST framework programme. He specializes in reconfigurable mobile systems and networks for beyond 3G, metadata and ontology languages, reflective and component middleware, adaptable services and open API frameworks for telecommunications. He is currently a Ph.D. candidate in the Department of Informatics & Telecommunications of the University of Athens. Nancy Alonistioti holds a B.Sc. degree and a Ph.D. degree in informatics and telecommunications from the University of Athens. Presently, she is a senior researcher in the Department of Informatics and Telecommunications of the University of Athens. In the past, she has held a research position with the Institute of Informatics and Telecommunications of NCSR “Demokritos” in the areas of protocol and service design and testing, mobile systems (UMTS), open architectures, and software defined radio systems and networks. Her current research interests are in reconfigurable mobile systems and networks beyond 3G, and adaptable services, pervasive computing and context awareness. She has participated in several national and European R&D projects, and has been the technical manager of the IST-MOBIVAS and IST-ANWIRE projects, which have had a focus on reconfigurable mobile systems, networks an respective service provision. She is currently a member of the management team and workpackage leader in the FP6 IST-E2R project on reconfigurability; she also serves as technical manager for the University of Athens in the FP6 IST-LIAISON project, which focuses on location based services in working environments. Dr Alonistioti is co-editor and co-author of the book entitled “Software defined radio, Architectures, Systems and Functions”, published by John Wiley in May 2003. She has authored over 55 publications in the area of mobile communications and reconfigurable systems and networks. Lazaros Merakos received the Diploma in electrical and mechanical engineering from the National Technical University of Athens, Athens, Greece, in 1978, and the M.S. and Ph.D. degrees in electrical engineering from the State University of New York, Buffalo, in 1981 and 1984, respectively. From 1983 to 1986, he was on the faculty of the Electrical Engineering and Computer Science Department, University of Connecticut, Storrs. From 1986 to 1994, he was on the faculty of the Electrical and Computer Engineering Department, Northeastern University, Boston, MA. During the period 1993D1994, he served as Director of the Communications and Digital Processing Research Center, Northeastern University. During the summers of 1990 and 1991, he was a Visiting Scientist at the IBM T. J. Watson Research Center, Yorktown Heights, NY. In 1994, he joined the faculty of the University of Athens, Athens, Greece, where he is presently a Professor in the Department of Informatics and Telecommunications, and Director of the Communication Networks Laboratory (UoA-CNL) and the Networks Operations and Management Center. Since 1995, he is leading the research activities of UoA-CNL in the area of mobile communications, in the framework of the Advanced Communication Technologies and Services (ACTS) and Information Society Technologies (IST) programs funded by the European Union (projects RAINBOW, Magic WAND, WINE, MOBIVAS, POLOS, ANWIRE, E2R, LIAISON). His research interests are in the design and performance analysis of communication networks, and wireless/mobile communication systems and services. He has authored more than 190 papers in the above areas. Dr. Merakos is Chairman of the Board of the Greek Universities Network, the Greek Schools Network, and Member of the Board of the Greek Research Network. In 1994, he received the Guanella Award for the Best Paper presented at the International Zurich Seminar on Mobile Communications.  相似文献   

13.
We present a new method for data integration and security by mixing medical waveforms and images with encrypted patient identifiers and unencrypted ancillary information, such as acquisition parameters, diagnostic comments and notes in textual, pictorial, and voice forms. We vary the sampling rate according to the instantaneous frequency of the signal. Redundant samples (or pixels) are eliminated and replaced by associative data which are labeled using a status string encoded based on the Huffman and run-length techniques. This method achieves both data compression and integration simultaneously, allows synchronized presentation of information from different sources by using multimedia technology, and provides data security features. Mingui Sun received a B.S. degree from the Shenyang Chemical Engineering Institute, China, in 1982, and M.S. and Ph. D. degrees in Electrical Engineering from the University of Pittsburgh in 1986 and 1989, respectively. He was a Graduate Student Researcher from 1985 to 1989 working on signal and image processing projects. Currently, he is a Associate Professor and an Associate Director of the Center for Clinical Neurophysiology in the Department of Neurosurgery at the University of Pittsburgh, and a Director of Research at Computational Diagnostics, Inc. His current research and development interests include advanced biomedical electronic devices, biomedical signal and image processing, sensors and transducers, biomedical instruments, artificial neural networks, wavelet transforms, time-frequency analysis, and the inverse problem of neurophysiological signals. He has over 160 publications in these areas. Qiang Liu received his B.S. and M.S. degrees in electrical engineering from Xidian University, Xian, China, in 1996 and 1999 respectively. He is currently a Ph.D. student at the University of Pittsburgh, Pittsburgh, USA. His further research interests include biomedical signal processing, medical imaging, and image/video segmentation, coding and transmission. Robert J. Sclabassi received the B.S.E. degree from Loyola University, Los Angeles, the M.S.E.E., Engineer in Electrical Engineering, and Ph.D. degrees in electrical engineering from the University of Southern California, and the M.D. degree from the University of Pittsburgh. He was employed in the Advanced Systems Laboratory at TRW, Los Angeles, and was a postdoctoral fellow at the Brain Research Institute at the University of California, Los Angeles. He was on the faculties of Department of Neurology and Biomathematics at UCLA until he joined the University of Pittsburgh. Dr. Sclabassi is currently a Professor of Neurological Surgery, Psychiatry, Electrical Engineering, Mechanical Engineering, Psychiatry, and Behavioral Neuroscience at the University of Pittsburgh. Dr. Sclabassi has published over 400 papers, chapters and conference proceedings. Dr. Sclabassi is a Registered Professional Engineer.  相似文献   

14.
单目图像序列光流三维重建技术研究综述   总被引:2,自引:0,他引:2       下载免费PDF全文
张聪炫  陈震  黎明 《电子学报》2016,44(12):3044-3052
由单目图像序列光流重建物体或场景的三维运动与结构是计算机视觉、图像处理与模式识别等领域的重要研究内容,在机器人视觉、无人机导航、车辆辅助驾驶以及医学影像分析等方面具有重要的应用。本文首先从精度与鲁棒性等方面对单目图像序列光流计算及三维重建技术近年来取得的进展进行综述与分析。然后采用Middlebury测试图像序列对HS、LDOF、CLG-TV、SOF、AOFSCNN 和 Classic +NL 等典型光流算法以及 Adiv、RMROF、Sekkati 和DMDPOF等基于光流的间接与直接重建方法进行实验对比分析,指出各对比方法的优点与不足,归纳各类方法的性能特点与适用范围。最后对利用分数阶微分模型、非局部约束、立体视觉以及深度线索解决亮度突变、非刚性运动、运动遮挡与模糊情况下光流计算及重建模型的局限性与鲁棒性问题进行总结与展望。  相似文献   

15.
Yang  Rong  Li  Junfeng  Zhao  Yuyin  Chai  Shumin  Han  Zhengsheng  an  Qian  He 《半导体学报》2005,26(5):857-861
A novel local-dielectric-thickening technique is presented for performance improvements of Si-based spiral inductors.This technique employs the processes of deposition,photolithography,and wet-etching,to locally thicken the oxide layer under the inductor,which can decrease the substrate loss and improve the inductor performance.Both the structures and processes are compact,economical,and compatible with CMOS processing.Several square spiral inductors with different inductances are fabricated,and the quality factors and the self-resonant frequencies both increase clearly with this proposed technique:for the 10,5,and 2nH inductors,the peak quality factors are effectively improved by 46.7%,49.7%,and 686%,respectively;however,the improvement percents of the selfresonant frequencies are more significant,which are 92.1%,91.0%,and no less than 68.1%,respectively.  相似文献   

16.
全球、区域及城市的碳浓度、碳源汇信息是应对气候变化、达成双碳目标、完善国际谈判、支持治理政策制定与执行的重要依据。国际认可的“自上而下” 方法将卫星观测作为基础的通量计算技术, 是验证温室气体排放清单的重要手段。系统介绍了温室气体的卫星探测载荷原理、类别和发展, 以及反演、估算CO2、CH4 和N2O 的浓度和排放通量的方法, 还有探测缺失和误差存在的影响因素等; 分析了对卫星探测温室气体能力提高的迫切需求, 浓度反演和排放量估算精度不足, 以及N2O、氟化物等其他温室气体遥感研究缺乏、地基遥感验证能力薄弱等问题; 最后总结了我国温室气体卫星遥感技术的发展趋势, 主要是面向主被动高时空分辨率卫星的研制应用、高精度多尺度排放量估算(特别针对城市、小区域和点源尺度)、氟化物遥感评估等主题, 以加强对碳排放的量化观测, 并增强对碳循环的理解, 提高感知和应对气候变化的能力。  相似文献   

17.
工程项目管理就是要求工程建设任务在规定的时间和成本控制范围内达到预期的各项管控目的,它贯穿于项目的设计、施工准备与施工、使用与维护3个阶段,重点是施工准备与施工阶段的安全、质量、成本、进度、合同方面的控制与管理。结合工作实践,介绍了攀枝花市广电工程建设项目在施工准备与施工过程中的管理策略及其方法运用。  相似文献   

18.
随着现代科学和信息技术的不断进步,示波器作为一种电子测量处理仪器也在不断发展并且已经变的越来越精密,也越来越智能.传统的模拟示波器受到低频响应能力和带宽限制等多方面因素影响在很多领域已显得力不从心,虚拟示波器的出现很好的解决了这些问题.本文以LabVIEW18版本为开发平台,设计制作了一款基于声卡的虚拟示波器.重点介绍...  相似文献   

19.
唐登运 《现代雷达》2007,29(4):68-71
文章遵循策划、分解、综合及优化的总体方案研究思路,根据要求,提出了三个机动6 m抛物面天线车结构总体备选方案;针对系统结构组成,详细分析了天馈线、天线座、拖车以及系统标定等子系统所有可能的结构方案;最后综合权衡研究三个备选方案在技术、质量、成本、周期等多方面的优劣,选择了最佳结构总体方案,确保了所选方案具有合理性、可行性、经济性、先进性和科学性。实践证明,所选方案用户满意,实施效果良好。  相似文献   

20.
We present the fixed-point analysis and VLSI realization of a maximum-power blind beamforming algorithm. This algorithm consists of the computation of a correlation matrix and its dominant eigenvector, and we propose that the latter be accomplished by the power method. After analyzing the numerical stability of the power method, we derive a division-free form of the algorithm. Based on a block-Toeplitz assumption, we design an FIR filter based system to realize both the correlation computation and the power method. Our ring processor, which is optimized to implement digital filters, is used as the core of the architecture. A special technique for dynamically switching filter inputs is shown to double the system throughput. VLSI design is discussed in detail and chip fabrication results are presented.Fan Xu received the B.S. and M.S. degrees in electronics engineering from Tsinghua University, Beijing, China, in 1993 and 1996, respectively, and the Ph.D. degree in electrical engineering from the University of California, Los Angeles, in 2001. His Ph.D. research focused on algorithm design and analysis for digital signal processors and eigenvector estimation architectures.In 1997, he held an internship at Bell Labs, Lucent Technologies, Holmdel, NJ, where he worked on equalization algorithms for cellular systems. He joined Broadcom Co., Irvine, CA, in 2001. His research interests include VLSI signal processing, customized digital signal processor, efficient hardware architectures for adaptive signal processing and high-performance VLSI design.Guichang Zhong received the B.S. degree from Xi an Jiaotong University, China, in 1996 and the M.S. degree from the Institute of Microelectronics of Chinese Academy of Sciences, Beijing, China, in 2000, both in electrical engineering. He is currently working toward the Ph.D. degree in integrated circuits and systems at the University of California, Los Angeles.His present research interests are in high-performance VLSI digital signal processors design, with an emphasis on reconfigurable and energy-efficient architecture.Alan N. Willson, Jr. received the B.E.E. degree from the Georgia Institute of Technology, Atlanta, in 1961, and the M.S. and Ph.D. degrees from Syracuse University, Syracuse, NY, in 1965 and 1967 respectively.From 1961 to 1964 he was with IBM, Poughkeepsie, NY. He was an Instructor in electrical engineering at Syracuse University from 1965 to 1967. From 1967 to 1973 he was a Member of the Technical Staff at Bell Laboratories, Murray Hill, NJ. Since 1973, he has been on the faculty of the University of California, Los Angeles (UCLA), where he is Professor of Engineering and Applied Science in the Electrical Engineering Department. In addition, he served the UCLA School of Engineering and Applied Science as Assistant Dean for Graduate Studies from 1977 through 1981 and as Associate Dean of Engineering from 1987 through 2001. He has been engaged in research concerning computer-aided circuit analysis and design, the stability of distributed circuits, properties of nonlinear networks, theory of active circuits, digital signal processing, analog circuit fault diagnosis, and integrated circuits for signal processing. He is editor of Nonlinear Networks: Theory and Analysis (New York: IEEE Press, 1974). In 1991 he founded Pentomics, Inc.Dr. Willson is a member of Eta Kappa Nu, Sigma Xi, Tau Beta Pi, the Society for Industrial and Applied Mathematics, and the American Society for Engineering Education. From 1977 to 1979, he served as Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. In 1980, he was General Chairman of the 14th Asilomar Conference on Circuits, Systems, and Computers. During 1984, he served as President of the IEEE Circuits and Systems Society. He was the recipient of the 1978 and 1994 Guillemin-Cauer Awards of the IEEE Circuits and Systems Society, the 1982 GeorgeWestinghouse Award of the American Society for Engineering Education, the 1982 Distinguished Faculty Award of the UCLA Engineering Alumni Association, the 1984 Myril B. Reed Best Paper Award of the Midwest Symposium on Circuits and Systems, the 1985 and 1994 W.R.G. Baker Awards of the IEEE, the 2000 Technical Achievement Award and the 2003 Mac Van Valkenburg Award of the IEEE Circuits and Systems Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号