首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A 1530-nm band has been studied as a pump wavelength for the long-wavelength-band erbium-doped fiber amplifier (L-band EDFA). The pump source is built using a tunable light source and cascaded conventional-band (C-band) EDFA. The L-band EDFA uses a forward pumping scheme. Within the 1530-nm band, the 1545-nm pump demonstrates 0.45-dB/mW gain coefficient, which is twice better than that of conventional 1480-nm pumped EDFA. The noise figure of the 1530-nm pump is at worst 6.36 dB, which is 0.75 dB higher than that of the 1480-nm pumped EDFA. Such high-gain coefficient indicates that the L-band EDFA consumes low power  相似文献   

2.
The performance of a long wavelength‐band erbium‐doped fiber amplifier (L‐band EDFA) using 1530nm‐band pumping has been studied. A 1530nm‐band pump source is built using a tunable light source and two C‐band EDFAs in cascaded configuration, which is able to deliver a maximum output power of 23dBm. Gain coefficient and noise figure (NF) of the L‐band EDFA are measured for pump wavelengths between 1530nm and 1560nm. The gain coefficient with a 1545nm pump is more than twice as large as with a 1480nm pump. It indicates that the L‐band EDFA consumes low power. The noise figure of 1530nm pump is 6.36dB at worst, which is 0.75dB higher than that of 1480nm pumped EDFA. The optimum pump wavelength range to obtain high gain and low NF in the 1530nm band appears to be between 1530nm and 1540nm. Gain spectra as a function of a pump wavelength have bandwidth of more than 10nm so that a broadband pump source can be used as 1530nm‐band pump. The L‐band EDFA is also tested for WDM signals. Flat Gain bandwidth is 32nm from 1571.5 to 1603.5nm within 1dB excursion at input signal of –10dBm/ch. These results demonstrate that 1530nm‐band pump can be used as a new efficient pump source for L‐band EDFAs.  相似文献   

3.
The population rate and power propagation equations are presented and solved to compare the amplification performances of bismuth-based Er3+-doped fiber amplifier (EDFA) pumped by 980-and 1480-nm lasers,respectively.In both single signal and coarse wavelength-division-multiplexing(CWDM)signals inputs,the 1480-nm pumped bismuth-based EDFA provides a larger signal gain than the 980-nm pumped one does,whereas the latter provides a relatively lower noise figure (NF).Comparative results indicate that the 1480-nm pumping scheme is more advantageous for bismuth-based EDFA regarding the band width and gain property.  相似文献   

4.
We propose a novel low noise and gain-flattened Er/sup 3+/-doped fiber amplifier (EDFA) with a cascade configuration for wavelength division multiplexing (WDM) signals. In this configuration, a 1480-nm pumped fluoride-based EDFA is joined to a 980-nm pumped silica-based EDFA through an optical isolator. By adjusting the silica-based Er/sup 3+/-doped fiber length in the silica-based EDFA, we realized an excellent flat gain EDFA with a gain excursion of less than 0.9 dB and noise figure of 5.7/spl plusmn/0.2 dB, and a low noise EDFA with a noise figure of 5/spl plusmn/0.2 dB and a gain excursion of less than 1.4 dB, for 8 channel WDM signal in the 1532-1560-nm wavelength region.  相似文献   

5.
We report new methods to inherently increase the flatness and bandwidth of erbium-doped silica fiber amplifiers from three perspectives: fiber design, pump-signal WDM coupler optimization, and amplifier structure. First, to achieve inherent control of the gain spectrum, a new type of composite fiber structure with an Er-doped core and a Sm-doped cladding ring is proposed and experimentally demonstrated. Interaction of the optical field with the Sm-doped cladding to produce evanescent wave filtering is modeled, which provides an in-line control of gain fluctuation in the erbium-doped flier amplifier (EDFA) C band, 1530-1560 nm. Second, the effect of the spectral characteristics of WDM couplers over the L band of an EDFA is explored. A fused taper fiber coupler for a 1480-nm pump is optimized for signals in the wavelength range of 1570-1610 nm by measuring the small-signal gain, gain tilt, and noise figure in an L-band EDFA. Finally, a new all-fiber structure for a wide-band EDFA, where the L and C bands were coupled serially, is demonstrated with optimized pump-signal couplers. Further optimization of the new composite fiber structure and the transient effects in the serially coupled EDFAs are also discussed  相似文献   

6.
A novel structure, which utilizes detrimental backward amplified spontaneous emission as a secondary pump source is suggested for a silica-based fiber amplifier, operating at a wavelength range from 1570 to 1610 nm. By using the secondary pumping effect from the strong, wasted 1550-nm band amplified spontaneous emission power in the unpumped section of the erbium-doped fiber, it was possible to achieve a considerable improvement in power conversion efficiency, increasing small-signal gain by more than 4 dB. The suggested pump structure was also shown to be useful in overall conversion efficiency improvement for L-band EDFA's, regardless of pump wavelength choice  相似文献   

7.
In this paper, a high-power erbium-doped fiber amplifier (EDFA) for the temperature sensor system is theoretically designed and experimentally demonstrated. It consists of an erbium-doped fiber that is pumped bidirectionally with two 980-nm high-power laser diodes (LDs). At the EDFA input, an optical isolator (ISO) is used to ensure that the signal pulse transmits forward only. After that, a wavelength division multiplexer (WDM) is employed to combine the forward pump laser (980 nm) and incident optical pulse (1550nm) into the erbium-doped fiber for direct amplification in the optical domain. At the EDFA output, another WDM couples the backward pump laser (980 nm) into the erbium-doped fiber and outputs the amplified optical pulse (1550 nm) with an ISO followed to isolate the backscattering light. According to this structure, we carried out the experiment in the condition as follows. For 980 nm pump LD, the operating current is 590 mA, and the setting temperature is 25℃. For EDFA, the length of erbium-doped fiber is 12.5 m, and the power of 1550 nm input signal is 1.5 mW. As a result, the power of pump LD is 330 mW, and the power uncertainty is 0.5%. The power of EDFA output at 1550 nm is 300 mW, and the power uncertainty is ±3 mW.  相似文献   

8.
《Electronics letters》2008,44(18):1082-1083
A novel low-noise extended L-band silicate erbium-doped fibre amplifier (EDFA) is proposed, consisting of two novel gain-flattened gain blocks for wavelength-division multiplexing (WDM) signals from 1562.2 to 1619.6 nm. Each gain block consists of three isolated phosphorus/ alumina co-doped silicate EDFs, an intermediate embedded gain flattening filter (GFF), a short wavelength pump laser diode, and a pump bypass and/or a recycle path. The proposed EDFA, which uses only three pump laser diodes, has achieved noise figures as much as 6.1 dB lower than those realised by an earlier EDFA, when its intermediate optical attenuator has large signal losses and the input signal power is low.  相似文献   

9.
We present results on a low-cost cladding-pumped L-band amplifier based on side pumping (GTWave) fiber technology and pumped by a single 980-nm multimode diode. We show that simultaneous noise reduction and transient suppression can be achieved by using gain clamping by a seed signal (/spl lambda/=1564 nm). In the gain-clamping regime, the amplifier exhibits 30-dB gain over 1570-1605-nm spectral band with noise figure below 7 dB. The noise figure can be further reduced to below 5 dB by utilizing a low power single-mode pump at 980 nm. The erbium-doped fiber amplifier is relatively insensitive to input signal variations with power excursions below 0.15 dB for a 10-dB channel add-drop.  相似文献   

10.
An obvious improvement on both the gain and noise figure (NF) is demonstrated in the new double-pass L-band erbium-doped fiber amplifier (EDFA) with incorporating a fiber Bragg grating (FBG). Compared with the conventional L-band EDFAs, the gain is improved by about 6 dB in the new configuration for a 1580-nm signal with an input power of -30 dBm at 60 mW of 980-nm pump power. It is important that the NF is greatly reduced in the new configuration, as the FBG greatly compresses the backward amplified spontaneous emission. For the economical utility of pump power and erbium-doped fiber length, such a configuration may be a very competitive candidate in the practical applications of L-band EDFAs.  相似文献   

11.
Gain enhancement in L-band loop EDFA through C-band signal injection   总被引:1,自引:0,他引:1  
Gain enhancement provided in L-band erbium-doped fiber amplifier (EDFA) with loop configuration and through C-band signal injection is experimentally demonstrated and compared with conventional single-stage L-band EDFA design. Significant backward amplified spontaneous emission suppression in C-band and pump conversion efficiency increase in L-band were observed for varying C-band seed signal wavelength and power levels. Gain and noise figure (NF) performance of loop design L-EDFA is compared with the conventional bidirectionally pumped single-stage L-EDFA design. Gain and NF measurements in the loop configuration have resulted in an up to 9.5-dB increase in gain and up to 2.6-dB degradation in NF at a moderate signal wavelength of 1585 nm.  相似文献   

12.
Harun  S.W. Ahmad  H. 《Electronics letters》2003,39(17):1238-1240
A gain clamped long wavelength band erbium-doped fibre amplifier (L-band EDFA) based on a ring laser cavity is demonstrated using a fibre Bragg grating (FBG) at the output end of the amplifier. This new design provides a good gain clamping as well as a gain flattening. The gain is clamped at 16.9 dB with gain variation of less than 0.1 dB from input signal power of -40 to -18 dBm by setting the VOA=5 dB. Also, the amplifier has the flattest gain spectrum at VOA=5. The gain variation is less than 1.0 dB within the wavelength range from 1570 to 1600 nm. This gain clamped amplifier also can support a 12 channel WDM system.  相似文献   

13.
A new pump wavelength of 1545 nm for the long-wavelength-band erbium-doped fibre amplifier shows higher power conversion efficiency than the conventional 1480 nm pump for high power wavelength division multiplexing input signals.  相似文献   

14.
120-nm bandwidth erbium-doped fiber amplifier in parallel configuration   总被引:1,自引:0,他引:1  
A new S- to L-band erbium-doped fiber amplifier (EDFA) module, which reaches 120-nm gain bandwidth of 1480 to 1600 nm, has been experimentally investigated and demonstrated by using coupled structure. A 32.8-, 34.7-, and 38.1-dB peak gain is obtained at 1504, 1532, and 1568 nm, respectively, when the input signal power is -30 dBm. In addition, this proposed amplifier also provides a broad-band amplified spontaneous emission (ASE) light source of 1480-1606 nm with the output level above -40 dBm.  相似文献   

15.
提出了一种改善反射式L波段掺铒光纤放大器增益和噪声指数的方法,即在放大器的输入端插入一泵浦源,通过提高信号输入端的粒子数反转率实现提高增益和降低噪声指数的目的.通过仔细调整两个泵浦源的输出功率,与单泵浦结构相比,在相同条件下,在1565~1615 nm波长范围内,小信号增益提高了1.5~9.9 dB,噪声指数下降了1.3~9.4 dB.  相似文献   

16.
Ultra-wide-band tellurite-based fiber Raman amplifier   总被引:2,自引:0,他引:2  
We describe the first wide-band tellurite-based fiber Raman amplifier (T-FRA) for application to seamless ultra-large-capacity dense wavelength-division multiplexing (WDM) systems. First, we confirmed that the Raman scattering characteristics of the tellurite-based fiber has so large a gain coefficient and Stokes shift that we can achieve a wide-band tellurite-based fiber Raman amplifier with a shorter fiber length than when using silica-based fiber. Second, we investigated the small signal gain and the signal transmission characteristics for a high gain and high output power operation with a single-stage amplifier. Focusing on double Rayleigh scattering, we compared the high gain limit of tellurite- and silica-based fibers. We then studied the impact of nonlinear effects by measuring the bit error rate (BER) when using a two-stage amplifier with a high output power of 18.8 dBm in which we simultaneously amplified eight channel signals in the L-band located on the ITU 100-GHz grid. Finally, we designed a wide-band tellurite-based fiber Raman amplifier with a multiwavelength band pumping scheme. We constructed this amplifier with a tellurite-based fiber only 250 m in length pumped by four-wavelength-channel laser diodes, and it provided a 160-nm bandwidth with a gain of over 10 dB and a noise figure below 10 dB from 1490 to 1650 nm. We also measured the BER to confirm the transmission characteristics of the amplifier for single channel operation over the whole signal wavelength range of 160 nm. We thus confirmed that the amplifier could be employed in ultra-high-capacity WDM systems.  相似文献   

17.
We report an S-band erbium-doped fiber amplifier (EDFA) with a multistage configuration in terms of its design, gain, and noise characteristics for various pump powers and input signal powers, the temperature dependence of the gain spectra, and gain tilt compensation for changes in input signal power and temperature change. We show that there is a tradeoff between low noise and efficiency in the S-band EDFA and describe the development of an S-band EDFA with a flattened gain of more than 21 dB and a noise figure of less than 6.7 dB. We also show that there is a change in the gain spectra with changes in the pump power and input signal power that is different from that observed in C- and L-band EDFAs, and that our EDFA has a temperature-insensitive wavelength. Furthermore, we develop a gain tilt compensated S-band EDFA that can cope with changes in input signal power and temperature.  相似文献   

18.
This report presents a low-noise L-band erbium-doped fiber amplifier (EDFA) with a dispersion-compensating Raman amplifier. With an optimized prestage and 1500-nm Raman-pump laser diodes, the proposed EDFA achieved an internal noise figure of less than 4.5 dB over a 33-nm flat gain bandwidth within 0.5 dB at -2 dBm of large signal input power.  相似文献   

19.
A highly efficient Er-doped fibre amplifier pumped by GaAlAs laser diodes is reported. Using a low Er-cluster content fibre with a high numerical aperture, the EDFA attains 39 dB signal gain for double LD pumping and 30 dB for single LD pumping at 1.536 mu m. A maximum gain coefficient of 1.3 dB/mW was achieved at the 0.827 mu m pump band.<>  相似文献   

20.
L-波段掺铒光纤放大器的优化设计   总被引:2,自引:0,他引:2  
针对传统L-波段掺铒光纤放大器(EDFA)转换效率不高,提出了一种在未泵浦掺铒光纤的输入端插入一根布拉格光栅(FBG)的L-波段EDFA新结构。实验表明这种结构可以提高功率转换效率,小信号增益增加约3dB。基于考虑ASE噪声的Giles模型,建立了这种EDFA的理论模型,并运用数值模拟算法系统地分析了布拉格波长及其反射率等参量对放大性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号