首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Science objectives of the ozone monitoring instrument   总被引:3,自引:0,他引:3  
The Ozone Monitoring Instrument (OMI) flies on NASA's Earth Observing System AURA satellite, launched in July 2004. OMI is an ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day, with a spatial resolution of 13 km/spl times/24 km. Trace gases measured include O/sub 3/, NO/sub 2/, SO/sub 2/, HCHO, BrO, and OClO. In addition OMI measures aerosol characteristics, cloud top heights and cloud coverage, and UV irradiance at the surface. OMI's unique capabilities for measuring important trace gases with daily global coverage and a small footprint will make a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change along with Aura's other three instruments. OMI's high spatial resolution enables detection of air pollution at urban scales. Total Ozone Mapping Spectrometer and differential optical absorption spectroscopy heritage algorithms, as well as new ones developed by the international (Dutch, Finnish, and U.S.) OMI science team, are used to derive OMI's advanced backscatter data products. In addition to providing data for Aura's prime objectives, OMI will provide near-real-time data for operational agencies in Europe and the U.S. Examples of OMI's unique capabilities are presented in this paper.  相似文献   

2.
We describe the operational algorithm for the retrieval of stratospheric, tropospheric, and total column densities of nitrogen dioxide (NO/sub 2/) from earthshine radiances measured by the Ozone Monitoring Instrument (OMI), aboard the EOS-Aura satellite. The algorithm uses the DOAS method for the retrieval of slant column NO/sub 2/ densities. Air mass factors (AMFs) calculated from a stratospheric NO/sub 2/ profile are used to make initial estimates of the vertical column density. Using data collected over a 24-h period, a smooth estimate of the global stratospheric field is constructed. Where the initial vertical column densities exceed the estimated stratospheric field, we infer the presence of tropospheric NO/sub 2/, and recalculate the vertical column density (VCD) using an AMF calculated from an assumed tropospheric NO/sub 2/ profile. The parameters that control the operational algorithm were selected with the aid of a set of data assembled from stratospheric and tropospheric chemical transport models. We apply the optimized algorithm to OMI data and present global maps of NO/sub 2/ VCDs for the first time.  相似文献   

3.
The Ozone Monitoring Instrument (OMI) on EOS/Aura offers unprecedented spatial and spectral resolution, coupled with global coverage, for space-based UV measurements of sulfur dioxide (SO/sub 2/). This paper describes an OMI SO/sub 2/ algorithm (the band residual difference) that uses calibrated residuals at SO/sub 2/ absorption band centers produced by the NASA operational ozone algorithm (OMTO3). By using optimum wavelengths for retrieval of SO/sub 2/, the retrieval sensitivity is improved over NASA predecessor Total Ozone Mapping Spectrometer (TOMS) by factors of 10 to 20, depending on location. The ground footprint of OMI is eight times smaller than TOMS. These factors produce two orders of magnitude improvement in the minimum detectable mass of SO/sub 2/. Thus, the diffuse boundaries of volcanic clouds can be imaged better and the clouds can be tracked longer. More significantly, the improved sensitivity now permits daily global measurement of passive volcanic degassing of SO/sub 2/ and of heavy anthropogenic SO/sub 2/ pollution to provide new information on the relative importance of these sources for climate studies.  相似文献   

4.
The ozone monitoring instrument   总被引:12,自引:0,他引:12  
The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Administration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial resolution of 13 km/spl times/24 km. Trace gases measured include O/sub 3/, NO/sub 2/, SO/sub 2/, HCHO, BrO, and OClO. In addition, OMI will measure aerosol characteristics, cloud top heights, and UV irradiance at the surface. OMI's unique capabilities for measuring important trace gases with a small footprint and daily global coverage will be a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change. OMI's high spatial resolution is unprecedented and will enable detection of air pollution on urban scale resolution. In this paper, the instrument and its performance will be discussed.  相似文献   

5.
臭氧是大气中一种重要的微量气体, 是影响对流层与平流层大气运动的重要成分之一, 臭氧的高精度探测 对于环境和气候具有重要的意义。OMI 传感器是目前具备探测全球臭氧含量的主要遥感传感器之一。利用地基 Pandora 观测网全球范围内44 个臭氧观测站点数据对OMI 卫星数据产品进行了精度验证。结果表明: OMI 臭氧产品 与Pandora 地基测量结果之间具有很好的线性相关性, 相关系数达到0.948, 但精度结果存在区域差异。在南半球地区, 相关系数为0.915; 在北半球低纬度地区, 其相关系数为0.932, 中纬度地区相关系数为0.948, 而在高纬度地区, 相关系 数达到了0.957。此外, 验证精度还与臭氧柱总量存在相关性, 在臭氧柱总量低于220 Du (对应臭氧空洞条件) 时, OMI 卫星产品存在高估现象, 高估约13%; 而在臭氧柱总量高于400 Du 时, OMI 的臭氧产品低于Pandora 地基测量结果, 且 随着臭氧柱总量增加, 低估情况也越严重, 在臭氧柱总量达到500 Du 时, OMI 臭氧产品低估约4%。  相似文献   

6.
We have developed an algorithm to retrieve scattering cloud pressures and other cloud properties with the Aura Ozone Monitoring Instrument (OMI). The scattering cloud pressure is retrieved using the effects of rotational Raman scattering (RRS). It is defined as the pressure of a Lambertian surface that would produce the observed amount of RRS consistent with the derived reflectivity of that surface. The independent pixel approximation is used in conjunction with the Lambertian-equivalent reflectivity model to provide an effective radiative cloud fraction and scattering pressure in the presence of broken or thin cloud. The derived cloud pressures will enable accurate retrievals of trace gas mixing ratios, including ozone, in the troposphere within and above clouds. We describe details of the algorithm that will be used for the first release of these products. We compare our scattering cloud pressures with cloud-top pressures and other cloud properties from the Aqua Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument. OMI and MODIS are part of the so-called A-train satellites flying in formation within 30 min of each other. Differences between OMI and MODIS are expected because the MODIS observations in the thermal infrared are more sensitive to the cloud top whereas the backscattered photons in the ultraviolet can penetrate deeper into clouds. Radiative transfer calculations are consistent with the observed differences. The OMI cloud pressures are shown to be correlated with the cirrus reflectance. This relationship indicates that OMI can probe through thin or moderately thick cirrus to lower lying water clouds.  相似文献   

7.
The Ozone Monitoring Instrument (OMI) onboard the NASA Earth Observing System (EOS) Aura spacecraft is a nadir-viewing spectrometer that measures solar reflected and backscattered light in a selected range of the ultraviolet and visible spectrum. The instrument has a 2600-km-wide viewing swath, and it is capable of daily, global contiguous mapping. We developed and implemented a surface ultraviolet (UV) irradiance algorithm for OMI that produces noontime surface spectral UV irradiance estimates at four wavelengths (305, 310, 324, and 380 nm). Additionally, noontime erythemal dose rate and the erythemal daily dose are estimated. The OMI surface UV algorithm inherits from the surface UV algorithm developed by NASA Goddard Space Flight Center for the Total Ozone Mapping Spectrometer (TOMS). The OMI surface UV irradiance products are produced and archived in HDF5-EOS format by Finnish Meteorological Institute. The accuracy of the surface UV estimates depend on UV wavelength and atmospheric and other geolocation specific conditions ranging from 7% to 30%. A postprocessing aerosol correction can be applied at sites with additional ground-based measurements of the aerosol absorption optical thickness. The current OMI surface UV product validation plan is presented.  相似文献   

8.
The Ozone Monitoring Instrument (OMI) operates onboard the National Aeronautics and Space Administration's Earth Observing System Aura satellite, which was launched in July 2004. Like its sister spacecraft Terra and Aqua, Aura's capabilities include direct broadcast (DB), i.e., the ability to broadcast data at the same time as they are being measured and stored in the spacecraft's memory for later transmission to Earth. The Finnish Meteorological Institute's Satellite Data Centre at Sodankyla/spl uml/ in Finnish Lapland is exploiting this capability to receive OMI data while Aura is in sight of the receiver, which enables nearly immediate production of OMI data products for a region that includes a large part of Europe, stretching from the North Pole to the Italian Alps. The current OMI Very Fast Delivery (VFD) products include maps of surface UV-B, ozone columns, and cloud coverage.  相似文献   

9.
In an analog/digital hybrid subcarrier multiplexed (SCM) transmission, carriers have generally been substituted for transmission signals such as AM vestigal sideband (AM-VSB) AM signals and M-QAM signals to evaluate transmission quality. In practical hybrid SCM, however, carriers are modulated by video signals or digital data, and the amplitude of a multiplexed signal composed of these modulation signals is more compressed than that of the carriers. This causes a decrease in the frequency of clipping of the multiplexed signal at the laser threshold. Consequently, the BER of the M-QAM signal in a practical hybrid SCM is lower than that of the experimental results for the same optical modulation index (OMI). However, it is difficult to prepare many practical modulation signals for experiments in a laboratory. Therefore, there is demand for a bit error rate (BER) analysis method for a multiplexed signal that includes the modulation signals needed to sufficiently evaluate the BER and determine the optimum OMI in a practical hybrid SCM. In this paper, we describe such a BER analysis method that can effectively estimate the BER in a practical hybrid SCM. In practical systems, the BER was greatly improved over the BER of a multiplexed signal of carriers. Furthermore, BER degradations due to clipping can be neglected for the AM signals in setting a practical OMI range. We used this analysis method to study the effective OMI range of AM and M-QAM signals. By assuming modulation signals, the OMI range is enlarged and, significantly, the OMI of an AM signal becomes suitable for setting practical values in AM-SCM transmission. This OMI range is more practical than those of former studies  相似文献   

10.
Ozone monitoring instrument calibration   总被引:2,自引:0,他引:2  
The Ozone Monitoring Instrument (OMI) was launched on July 15, 2004 on the National Aeronautics and Space Administration's Earth Observing System Aura satellite. The OMI instrument is an ultraviolet-visible imaging spectrograph that uses two-dimensional charge-coupled device detectors to register both the spectrum and the swath perpendicular to the flight direction with a 115/spl deg/ wide swath, which enables global daily ground coverage with high spatial resolution. This paper presents the OMI design and discusses the main performance and calibration features and results.  相似文献   

11.
A calibration methodology for the optimized minimum inductor (OMI) bandpass filter (BPF) to compensate passive components' inherent loss, such as resistances and reactances, is presented. OMI BPF prevails conventional elliptic and Chebyshev BPFs by introducing fewer inductors for the same stopband rejection requirement. Given design specifications (bandwidth, stopband rejection) at a specific center frequency, the calibration flow optimizes the approach to offset the inaccuracy of center frequency, bandwidth, and stopband rejection due to the discrepancy between the actual and ideal prototype passive components. Two OMI BPF designs before and after calibration are presented for demonstration and comparison. They are 1) a 3rd order centered at 2.388 GHz, 35.54% fractional bandwidth (FBW), 29.97 dB stopband rejection, and 2) a 7th order centered at 2.333 GHz, 17.40% FBW, 62.29 dB stopband rejection.  相似文献   

12.
利用地基多轴差分吸收光谱仪(multi axis differential optical absorption spectroscopy,MAX-DOAS)在2008年北京奥运期间对奥运场馆附近上空对流层NO2进行监测,并与OMI的测量结果进行对比.结果显示;地基MAX-DOAS的NO2结果比OMI结果高,最高达到了2.4倍;二者在无云条件下得到了比较好的相关性(R=0.64),但在阴雨天气条件下,云的存在使得MAX-DOAS结果与OMI卫星数据产生了很大差别,其相关系数仅为0.19,但与LP-DOAS却有很好的一致性,相关系数为0.92.  相似文献   

13.
随着全球工业化速度加快和人口的增多,大气环境问题日益突出,NO2和气溶胶在大气化学中扮演着重要的角色。地基多轴差分吸收光谱技术(MAX-DOAS)基于被动DOAS原理,近年来已成功应用于大气痕量气体柱浓度和气溶胶光学厚度(AOD)测量方面。本文基于被动DOAS算法对合肥秸秆燃烧期间NO2柱浓度以及气溶胶光学厚度进行了观测,并把对流层柱浓度和臭氧监测仪(Ozone Monitoring Instrument, OMI)结果进行对比;测量的气溶胶光学厚度和太阳光度计(CE318)进行了对比。结果表明,MAX-DOAS测量结果要高于卫星值,11月6日MAX-DOAS测量NO2柱浓度日均值为OMI的1.9倍;二者在无云条件下一致性较好;MAX-DOAS反演AOD和太阳光度计结果相关性在0.9以上。  相似文献   

14.
利用差分吸收光谱技术 (DOAS) 反演了我国首个星载大气痕量气体差分吸收光谱仪 (EMI) 的臭氧斜柱浓度 (SCD), 通过 SCIATRAN 辐射传输模型建立了大气质量因子 (AMF) 的查找表, 最终得到 EMI 的臭氧垂直柱浓度 (即 臭氧柱总量)。将 EMI、 OMI 和 TROPOMI 于 2018 年 11 月 2 日获得的南极区域臭氧柱总量进行了对比分析, 三者 均观测到南极中高纬度 (30◦ S∼70◦ S) 的臭氧高值区域与南极内陆 (75◦ S∼90◦ S) 的臭氧低值区域, 且 EMI 与 OMI、 TROPOMI 的臭氧柱总量相关性 (R2) 分别为 0.977 和 0.979。进一步将 EMI 反演的臭氧柱总量与南极长城站 (62.22 S, 58.96 W) 地基天顶散射光差分吸收光谱仪 (ZSL-DOAS) 反演的臭氧柱总量进行对比, 二者相关性 (R2) 为 0.926。  相似文献   

15.
The probability of an SCM (subcarrier multiplexed) signal falling outside the linear region of a laser diode is calculated in order to determine the overmodulation that may be practically employed for multichannel video distribution in single-octave SCM networks. The overmodulation is predicted as a function of the number of subcarriers in single-octave SCM systems supporting up to about 70 FM video channels, for SNRs (signal-to-noise ratios) of 47 dB (I/PAL), and 56 dB (M/NTSC). The RMS optical modulation index (OMI) is demonstrated to be a more useful performance parameter than the linear OMI in SCM systems carrying a large number of channels. A 47 dB weighted SNR (with 4 dB margin) is deemed sufficient for acceptable picture quality in cable distribution systems, whereas a 56 dB value would be required for long-distance point-to-point optical links. RMS OMI values of around 70 and 50, respectively, can be employed  相似文献   

16.
This paper analyzes the performance of the atmospheric optical subcarrier multiplexing (AO-SCM) systems and the atmospheric optical subcarrier-modulated code-division multiplexing (AO-CDM) systems. The average received carrier-to-interference-plus-noise ratio (CINR) of the AO-SCM systems and the AO-CDM systems on a turbulence channel with the scintillation and the nonlinearity of a laser diode is derived. It is shown that the received CINR of the AO-CDM systems is larger than that of the AO-SCM systems when the number of channels is four for the same optical modulation index (OMI), and vice versa, when the number of channels is 16 for the same OMI.  相似文献   

17.
Overview of the EOS aura mission   总被引:2,自引:0,他引:2  
Aura, the last of the large Earth Observing System observatories, was launched on July 15, 2004. Aura is designed to make comprehensive stratospheric and tropospheric composition measurements from its four instruments, the High Resolution Dynamics Limb Sounder (HIRDLS), the Microwave Limb Sounder (MLS), the Ozone Monitoring Instrument (OMI), and the Tropospheric Emission Spectrometer (TES). With the exception of HIRDLS, all of the instruments are performing as expected, and HIRDLS will likely be able to deliver most of their planned data products. We summarize the mission, instruments, and synergies in this paper.  相似文献   

18.
与搭载在EOS AURA卫星上的OMI(Ozone Monitoring Instrument)探测器相比,由车载被动差分吸收光谱(differential optical absorption spectroscopy,DOAS)技术获得的NO2柱浓度数据空间分辨率更高,因而能够更准确的反映出NO2时空分布情况,利用OMI NO2 Level2数据产品重构2013年6月石家庄及周边区域的NO2柱浓度分布,结合风场数据分析NO2柱浓度沿风场方向的空间分布,同时,使用车载被动DOAS系统对西南通道即石家庄-保定-北京路段进行走航观测,获取车载DOAS NO2柱浓度分布数据,使用指数修正高斯(exponentially-modified Gaussian,EMG)拟合方式,分别拟合OMI NO2 数据和经过地基DOAS数据修正后的OMI NO2 数据得到NOx排放通量分别为195.8 mol/s、160.6 mol/s。经过地基DOAS数据修正的NOx排放量小于卫星估算值,可能是由于卫星的空间分辨率较低导致的。  相似文献   

19.
张青松  侯再红  谢晨波 《红外与激光工程》2019,48(7):706008-0706008(6)
激光雷达探测臭氧和气溶胶垂直廓线分布近年来在环境监测领域获得广泛应用。介绍了一套可同时用于探测臭氧和气溶胶浓度的激光雷达系统。采用Nd:YAG激光器,通过二倍频器和四倍频器分别产生532 nm和266 nm激光光源,基于受激拉曼散射原理,在两根拉曼管中分别充有氘气和氢气,产生拉曼频移光289 nm,299 nm,通过差分吸收算法原理反演垂直空间臭氧浓度廓线,通过米散射算法原理来反演气溶胶浓度廓线。水平扫描试验结果显示,雷达系统的探测结果与近地面点式臭氧分析仪测量结果有较好的一致性,相对误差小于10%。在安徽合肥科学岛外场观测结果表明:臭氧探测高度,白天可以达到3 km,晚上可以达到5 km,气溶胶探测高度,白天可以达到10 km,晚上可以达到15 km。  相似文献   

20.
对1500nm波段光CATV噪声的产生的机制进行了讨论.重点分析了EDFA产生的噪声特性,对系统载噪比(CNR)与EDFA输入功率之间的关系和系统CNR与调制指数的关系进行了研究,得出了提高CNR的方案;对光CATV组网方案进行了讨论,给出了一个光CATV网络设计的实例.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号