首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了对激光等离子体进行诊断,研制了聚焦型椭圆弯晶谱仪用来探测等离子体辐射的X射线.谱仪利用从椭圆一个焦点发射出的光线经椭圆面反射必汇聚于另一焦点的性质而研制,椭圆的离心率和焦距分别为0.9586mm及1350mm.在此采用氟化锂(200)(2d=0.4027nm)作为晶体分析器,其布拉格衍射角变化范围为30~67.5°,可探测波长范嗣为0.2~O.37nm.在"神光-Ⅱ"激光装置上进行了打靶实验,利用软X射线CCD相机作为摄谱器件,该谱仪获得了钛的类He共振线(w)、磁四级M2跃迁x线、互组合跃迁y线、禁戒谱线(z)以及类Li谱线(q).实验结果表明该谱仪的最高光谱分辨率(λ/△λ)可以达到1000以上,能够用于激光等离子体X射线光谱学研究.  相似文献   

2.
Internal reflection features caused by the surface plasmon resonance in nanoscale films containing defect tin dioxide clusters in the stoichiometric dielectric matrix are studied by the method of polarization modulation of electromagnetic radiation. The angular and spectral characteristics of reflectances R s 2 and R p 2 of s- and p-polarized radiation and their polarization difference ρ = R s 2R p 2 are measured in the wavelength range λ = 400–1600 nm. The experimental characteristics ρ(ϑ, λ) (ϑ is the radiation incidence angle) obtained represent the optical property features associated with the film structure and morphology. Surface plasmon polaritons and local plasmons excited by s- and p-polarized radiation are detected; their frequency and relaxation properties are determined. The structural sensitivity of the technique for studying the surface plasmon resonance for tin dioxide films is shown.  相似文献   

3.
The temperature dependence of the thermal conductivity κ(T), electrical resistivity ρ(T), and Seebeck coefficient S(T) of Mg2Sn:Ag crystals with 0 at.% to 1 at.% Ag content were measured at T = 2 K to 400 K. The crystals were cut from ingots that were prepared by the vertical Bridgman method. Undoped samples show a dramatic κ ∝ T 3 rise at low temperatures to a peak value κ 15K = 477 W m−1 K−1. This leads to exceptionally large phonon drag effects causing giant thermopower with S rising sharply to a peak value S 20K = 3000 μV K−1. At higher temperatures S decreases and changes sign to intrinsic values S ≈ −60 μV K−1. The addition of Ag changes the transport properties as follows: (a) κ decreases systematically, the peak shifts to 30 K and falls to 7 W m−1 K−1; (b) ρ changes from high to low values; (c) S(T) changes to a linear dependence with S 300K ≈ 150 μV K−1 to 200 μV K−1.  相似文献   

4.
Ferroelectricity and X-ray detection property have been recently implemented for the first time in hybrid bromide double perovskites. It sheds a light on achieving photosensitive and ferroelectric multifunctional materials based on 2D lead-free hybrid halide double perovskites. However, the low Tc, small Ps, and relatively low X-ray sensitivity in the reported bromide double perovskites hinder practical applications. Herein, the authors demonstrate a novel 2D lead-free iodide double perovskite (4,4-difluoropiperidinium)4AgBiI8 (1) for high-performance X-ray sensitive ferroelectric devices. Centimeter-sized single crystal of 1 is obtained and exhibits an excellent ferroelectricity including a high Tc up to 422 K and a large Ps of 10.5 μC cm−2. Moreover, due to a large X-ray attenuation and efficient charge carrier mobility (μ)–charge carrier lifetime (τ) product, the crystal 1 also exhibits promising X-ray response with a high sensitivity up to 188 μC·Gyair−1 cm−2 and a detection limit below 3.13 μGyair·s−1. Therefore, this finding is a step further toward practical applications of lead-free halide perovskite in high-performance photoelectronic devices. It will afford a promising platform for exploring novel photosensitive ferroelectric multifunctional materials based on lead-free double perovskites.  相似文献   

5.
Effect of high electric fields on the conductivity of 0.5-1-μm-thick layers of a chalcogenide glassy semiconductor with a composition Ge2Sb2Te5, used in phase memory cells, has been studied. It was found that two dependences are observed in high fields: dependence of the current I on the voltage U, of the type IU n , with the exponent (n ≈ 2) related to space-charge-limited currents, and a dependence of the conductivity σ on the field strength F of the type σ = σ0exp(F/F 0) (where F 0 = 6 × 104 V cm−1), caused by ionization of localized states. A mobility of 10−3–10−2 cm2 V−1 s−1 was determined from the space-charge-limited currents.  相似文献   

6.
Thin films of the semiconducting compound Mg2Ge were deposited by magnetron cosputtering from source targets of high-purity Mg and Ge onto glass substrates at temperatures T s = 300°C to 700°C. X-ray diffraction shows that the Mg2Ge compound begins to form at a substrate temperature T s ≈ 300°C. Films deposited at T s = 400°C to 600°C are single-phase Mg2Ge and have strong x-ray peaks. At higher T s the films tend to be dominated by a Ge-rich phase primarily due to the loss of magnesium vapor from the condensing film.␣At optimum deposition temperatures, 550°C to 600°C, films have an electrical conductivity σ 600 K = 20 Ω−1 cm−1 to 40 Ω−1 cm−1 and a Seebeck coefficient α = 300 μV K−1 to 450 μV K−1 over a broad temperature range of 200 K to 600 K.  相似文献   

7.
Charge-carrier transport in Ge20As20S60 films has been studied using the transit time method under low-injection conditions at room temperature. It was found that drift mobilities of electrons and holes in Ge20As20S60 films are close to each other, i.e., μ e ≈ μ h ≈ 2 × 10−3 cm2 V−1 s−1 at T = 295 K and F = 5 × 104 V/cm. It was shown that the time dependence of the photocurrent during carrier drift and the voltage dependence of the drift mobility allowed the use of the concept of anomalous dispersive transport. Experimental data were explained using the model of transport controlled by carrier trapping by localized states with energy distribution near conduction and valence band edges described by the exponential law with a characteristic energy of ∼0.05 eV.  相似文献   

8.
Cd1-xZnxS nanoparticles were grown on pre-cleaned glass substrates using microwave-assisted chemical bath deposition technique. Nanoparticles obtained by this method were smooth, uniform, good adherent, brownish yellow in color where the brightness of the yellow color nature decreases with increasing Zn2+ content. The elemental composition analysis confirmed that the nanoparticles comprise of Cd2+, Zn2+and S2-. Scanning electron microscope images confirmed the surface uniformity of the Cd1-xZnxS nanoparticles devoid of any void, pinhole or cracks and covered the substrate well. The particle size also decreases with increasing Zn ion content. X-ray diffraction (XRD) indicates the hexagonal structure (002) without phase transition. The grain size decreases from 36.45 to 9.60 nm, dislocation density increases from 0.000745 to 0.01085 Line2/m2 and lattice parameter decreased from 6.868 to 6.155 nm with increasing Zn2+ content. The best transmittance of about 95% was achieved for x=1.0. The nanoparticles showed reduction in the absorbance as Zn ion content increased. Four point probe revealed that the electrical resistivity increased from 1.51×1010 to 6.67×1010 Ω ·cm while electrical conductivity decreases from 6.62×10-11 to 1.49×10-11 (Ω ·cm)-1 with increasing Zn2+ content. The other electrical properties such as sheet resistance increased from 1.52×108 to 1.58×108Ω, charge carrier mobility decreased from 0.777 to 0.0105 cm2/(V·s) and charge carrier density increased from 1.06×1012 to 3.95×1012 cm-3.  相似文献   

9.
Lead halide perovskites have made great advance in direct X-ray detection, however the presence of toxic lead and the requirement of high working voltages severely limit their applicability and operational stability. Thus, exploring “green” lead-free hybrid perovskites capable of detecting X-rays at zero bias is crucial but remains toughly challenging. Here, utilizing chiral R/S-1-phenylpropylamine (R/S-PPA) cations, a pair of 0D chiral-polar perovskites, (R/S-PPA)2BiI5 ( 1 R / 1 S ) are constructed. Their intrinsic spontaneous electric polarization induces a large bulk photovoltage of 0.63 V, which acts as a driving force to separate and transport photogenerated carriers, thus endowing them with the capability of self-driven detection. Consequently, self-driven X-ray detectors with a low detection limit of 270 nGy s−1 are successfully constructed based on high-quality, inch-sized single crystals of 1 R . Notably, they show suppressed baseline drift under the self-driven mode, exhibiting superior operational stability. This study realizes self-driven X-ray detection in a single-phase lead-free hybrid perovskite by exploiting the intrinsic bulk photovoltaic effect, which sheds light on future explorations of lead-free hybrid perovskites toward “green” self-driven radiation detectors with high performance.  相似文献   

10.
The values of p-n and PHg} for metal-saturated Hg0.60}Cd0.40}Te are fit by a simple model of a non-degenerate semiconductor containing doubly-ionized native donors and acceptors, and foreign donors in the 1–4 x 1015}cm−3 range. The parameters obtained are consistent with present values for the room temperature energy gap and intrinsic carrier concentration as well as with the high degree of compensation necessary to account for the calculated ionized impurity scattering. The parameters are log10}ni} =-1118/T + 13.76+ 1.5 logT} log PHg} (int) =-4850/T + 7.926 log k1/2}s} =-4032/T + 21.52  相似文献   

11.
A wide range of samples of both n-type and p-type GaxIn1-xAsyP1-y on InP has been grown by LPE with carrier concentrations in the low 1016cm−3range. The electron mobility (μe) at room temperature decreased from about 4000 cm2V−1s−1 at y = 0 and passed through a shallow minimum near y = 0.25. At high y values, μe rose steeply, reaching 11 000 cm2V−1s−1 at the ternary boundary. In the p-type material the hole mobility (μp) varied from 140 cm V−1s−1 in InP, passed through a minimum of about 70 cm2V−1s−1 near y = 0.5 and then increased swiftly towards the ternary boundary. The temperature dependence of both μe and μp suggested the presence of alloy or space-charge scattering. In order to distinguish between these two mechanisms the pressure coefficient of the direct band-gap dEo/dP was measured as a function of y by observing the movement with pressure of the photoconductive edge. From dEo/dP the pressure variation of the effective mass was deduced. By measuring the change in electron and hole mobilities with pressure, it was then possible to establish that alloy scattering rather than space-charge scattering was occurring. From the composition dependence of the alloy scattering potentials for electrons and holes predictions have been made of the variation of μe and μP with temperature, pressure and dopant Presently a Nuffield Science Fellow concentration. At room temperature a maximum electron mobility of about 11,200 cm2V−1 s−1 is indicated. Presently a Nuffield Science Fellow  相似文献   

12.
The self-diffusion of arsenic in gallium arsenide has been studied over the temperature range 1000 to 1075δC using radiotracer techniques.76As was diffused into GaAs samples at known arsenic pressures in sealed capsules. After diffusion, layers were removed from the surface using anodic oxidation followed by oxide dissolution. Diffusion profiles were obtained by measuring the76As concentration in each sectioned layer by γ-radiation counting. Diffusion coefficients at PAs 2 = 0.75 atm and over the temperature range 1000 to 1050δC were found to be 5.2 × 10-16cm2s-1 to 1.5 × 10-15 cm2s-1, leading to an activation energy of the order of 3.0± 0.04 eV and a pre-exponential factor of 5.5 × l0-4 ± 2.4 × 10-4 cm2s-1. Diffusion coefficients at PAs 2 =3.0 atm were found to be 5.5 × 10-15 and 9.8 × 10-16 cm2 s-1 at 1050 and 1075δC, respectively. Results are discussed in terms of native point defect equilibria with the arsenic gaseous phase, and with respect to other work. It is deduced from our observed arsenic pressure dependence of the arsenic diffusivity that the most likely diffusion mechanism  相似文献   

13.
The properties of Co4Sb12 with various In additions were studied. X-ray diffraction revealed the presence of the pure δ-phase of In0.16Co4Sb12, whereas impurity phases (γ-CoSb2 and InSb) appeared for x = 0.25, 0.40, 0.80, and 1.20. The homogeneity and morphology of the samples were observed by Seebeck microprobe and scanning electron microscopy, respectively. All the quenched ingots from which the studied samples were cut were inhomogeneous in the axial direction. The temperature dependence of the Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ) was measured from room temperature up to 673 K. The Seebeck coefficient of all In-added Co4Sb12 materials was negative. When the filler concentration increases, the Seebeck coefficient decreases. The samples with In additions above the filling limit (x = 0.22) show an even lower Seebeck coefficient due to the formation of secondary phases: InSb and CoSb2. The temperature variation of the electrical conductivity is semiconductor-like. The thermal conductivity of all the samples decreases with temperature. The central region of the In0.4Co4Sb12 ingot shows the lowest thermal conductivity, probably due to the combined effect of (a) rattling due to maximum filling and (b) the presence of a small amount of fine-dispersed secondary phases at the grain boundaries. Thus, regardless of the non-single-phase morphology, a promising ZT (S 2 σT/κ) value of 0.96 at 673 K has been obtained with an In addition above the filling limit.  相似文献   

14.
By using an aqueous solution of Ni(NO3)2/NH4OH for formation of Ni media on a-Si, disk-like super-large domain metal-induced radially crystallized (S-MIRC) poly-Si was prepared. The process requires no buffer layer deposition on a-Si. The prepared S-MIRC poly-Si has an average domain size of up to 60 μm, highest hole Hall mobility of 27.1 cm2 V−1 s−1, and highest electron Hall mobility of 45.6 cm2 V−1 s−1. Poly-Si TFT made on super-large-domain S-MIRC poly-Si had high mobility of ~105.8 cm2 V−1 s−1, steep sub-threshold slope of ~1.0 V decade−1, high on/off state current ratio of >107 and low threshold voltage of ~ −6.9 V. A simultaneous Ni-collected and induced crystallization model is proposed to explain the growth kinetics of S-MIRC poly-Si.  相似文献   

15.
Silicon dioxide (SiO2), silicon nitride (Si x N y ), and zinc sulfide (ZnS) with ammonium sulfide [(NH4)2S] as a prepassivation surface treatment were compared as passivants for InAs/GaSb strained layer superlattice detectors with a 0% cutoff wavelength of ∼10 μm. SiO2 did not show significant improvement and the zero-bias resistance-area product (R 0 A) was 0.72 Ω-cm2 at 77 K. Si x N y passivation showed a nominal improvement with an R 0 A value of 4.1 Ω-cm2 at 77 K. ZnS with (NH4)2S treatment outperformed others significantly, improving the R 0 A value to 492 Ω-cm2 at 77 K. Variable-area diode measurements indicated a bulk-limited R 0 A value of 722 Ω-cm2. ZnS-passivated diodes exhibited maximum surface resistivity with a value of 2500 Ω-cm.  相似文献   

16.
The temperature and concentration dependences of the frequency bandwidth of terahertz heterodyne AlGaAs/GaAs detectors based on hot electron phenomena with phonon cooling of two-dimensional electrons have been measured by submillimeter spectroscopy with a high time resolution. At a temperature of 4.2 K, the frequency bandwidth at a level of 3 dB (f 3 dB) is varied from 150 to 250 MHz with a change in the concentration n s according to the power law f 3dBn s −0.5 due to the dominant contribution of piezoelectric phonon scattering. The minimum conversion loss of the semiconductor heterodyne detector is obtained in structures with a high carrier mobility (μ > 3 × 105 cm2 V−1 s−1 at 4.2 K).  相似文献   

17.
Creep behavior of eutectic Sn-Cu lead-free solder alloy   总被引:1,自引:0,他引:1  
Due to a typographical error incorporated during the editing process, the following is a correction of that error. Tensile creep behavior of precipitation-strengthened tin-based eutectic Sn-0.7Cu alloy was investigated at three temperatures ranging from 303 to 393 K. The steady-state creep rates cover six orders of magnitude (10−3 s−1 to 10−8 s−1) under the stress range of σ/E=10−4 to 10−3. The initial microstructure reveals that intermetallic compound Cu6Sn5 is finely dispersed in the matrix of β-Sn. By incorporating a threshold stress, σth, into the analysis, the creep data of eutectic Sn-Cu at all temperatures can be fitted by a single straight line with a slope of 7 after normalizing the steady-state creep rate and the effective stress, indicating that the creep rates are controlled by the dislocation pipe diffusion in tin matrix. So the steady-state creep rate, , can be expressed as , where QC is the active energy for creep, G is the temperature-dependent shear modulus, b is the Burgers vector, R is the universal gas constant, T is the temperature, σ is the applied stress, A is a material-dependent constant, and σthOB√1−k R 2 , in which σoB is the Orowan bowing stress and kR is the relaxation factor. J. Electron. Mater. 31(5)(2002), pp.442–448. The online version of the original article can be found at  相似文献   

18.
Single crystals of the ternary system Bi2−x Tl x Se3 (nominally x = 0.0 to 0.1) were prepared using the Bridgman technique. Samples with varying content of Tl were characterized by measurement of lattice parameters, electrical conductivity σ ⊥c, Hall coefficient R H(Bc), and Seebeck coefficient ST⊥c). The measurements indicate that incorporation of Tl into Bi2Se3 lowers the concentration of free electrons and enhances their mobility. This effect is explained within the framework of the point defects in the crystal lattice, with formation of substitutional defects of thallium in place of bismuth (TlBi) and a decrease in the concentration of selenium vacancies (VSe + 2 V_{\rm{Se}}^{ + 2} ). The temperature dependence of the power factor σS 2 of the samples is also discussed. As a consequence of the thallium doping we observe a significant increase of the power factor compared with the parent Bi2Se3.  相似文献   

19.
Thermoelectric materials are attractive since they can recover waste heat directly in the form of electricity. In this study, the thermoelectric properties of ternary rare-earth sulfides LaGd1+x S3 (x = 0.00 to 0.03) and SmGd1+x S3 (x = 0.00 to 0.06) were investigated over the temperature range of 300 K to 953 K. These sulfides were prepared by CS2 sulfurization, and samples were consolidated by pressure-assisted sintering to obtain dense compacts. The sintered compacts of LaGd1+x S3 were n-type metal-like conductors with a thermal conductivity of less than 1.7 W K−1 m−1. Their thermoelectric figure of merit ZT was improved by tuning the chemical composition (self-doping). The optimized ZT value of 0.4 was obtained in LaGd1.02S3 at 953 K. The sintered compacts of SmGd1+x S3 were n-type hopping conductors with a thermal conductivity of less than 0.8 W K−1 m−1. Their ZT value increased significantly with temperature. In SmGd1+x S3, the ZT value of 0.3 was attained at 953 K.  相似文献   

20.
 design principle is propose for long.P~+IN~+Ge magneto-diode with a high surface recombination region on one side.The optimal relation is established for design among its length l,depth d,width w and resistivity p: where ⊿T is the maximum permissible temperature rise of the chip,R_(th)the thermal resistance of the header,I_o the forward current of the diode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号