首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 456 毫秒
1.
非连续接收(DRX)是5G非授权频段部署中重要的节能机制。为授权频段设计的非连续接收机制,不能良好适配非授权频段,唤醒窗口长度固定而不能随信道繁忙程度调整,为保证传输时延性能则需要消耗更多能量。该文针对5G非授权频段新无线技术(5G NR-U),提出一种新型非连续接收机制。在新机制中,非授权频段新空口设备处于唤醒状态时不断对信道进行能量检测来判断信道的忙闲状态,并据此自适应调整唤醒窗口时间。相比唤醒窗口长度固定的原有机制,数学模型分析和仿真实验的结果表明,在保证业务传输时延要求的前提下,新机制可比原有机制节约更多的能量。在文中典型场景中,新机制比原有机制可多节约能量11%。  相似文献   

2.
针对5G非授权频段通信(NR-U)场景,该文提出一种新型的低时延随机接入机制。该机制分别在随机接入回复窗口(RARW)与竞争窗口中加入了信道空闲计时器,来减少UE因在非授权频段进行竞争接入所引起的时延;此外该机制还加入了请求发送/允许发送机制,来解决隐藏节点对随机接入过程的影响。该机制可降低传统机制中由于未考虑非授权频段特性及隐藏节点问题所引起的随机接入时延问题。该文首先对NR-U场景中的传统随机接入机制进行分析并进行问题定位;其次,提出新型随机接入机制的网络实体交互流程,建立新型机制与传统机制中的网络实体交互时序模型;最后以数学推导和仿真的方法对新型机制与传统机制进行对比评估,相关结果显示出新型机制在平均耗时方面的优势。  相似文献   

3.
To enable the coexistence of Licensed Assisted Access (LAA) and Wi‐Fi in 5 GHz unlicensed bands, a new channel access mechanism is proposed. Accounting for the fairness between LAA and Wi‐Fi, the proposed mechanism finds the optimal transmission time ratio by adaptively adjusting the transmission durations for LAA and Wi‐Fi. In addition, we propose a new analytical model for the distributed coordination function of IEEE 802.11 through some modifications of conventional analytical models for saturation and non‐saturation loads. By computing the activity ratio of Wi‐Fi, the proposed analytical model is able to control the time ratio between LAA and Wi‐Fi, which is required for practical implementation of the proposed access mechanism. Through numerical simulations, the proposed channel access mechanism is compared with conventional methods in terms of throughput and utility.  相似文献   

4.
The deployment of mobile systems is facing several challenges. Precisely, the lack of available licensed bands limits the network capacity, affecting the quality of service (QoS). Consequently, there has been significant interest in utilizing the unlicensed spectrum for mobile data traffic. 3GPP proposed and improved the coexistence of LTE and Wi-Fi in the unlicensed band starting in Release 13 and the following releases, such as LTE-LAA and 5G NR-U. This will cause significant interference and drastically affects the Wi-Fi users' QoS. To that end, we propose the use of time-domain virtualization between 5G NR-U and Wi-Fi systems. In particular, a scheduling algorithm is proposed, where the sharing mechanism is allocated in time slots rather than allocating a subband frequency for each technology. 5G use cases have different QoS requirements and our proposed solution aims at meeting these requirements. Accordingly, the performance is evaluated by studying the impact of resource virtualization and the coexistence configuration. Simulation results confirm that the minimum rate and maximum delay constraints are met. Moreover, it is shown that resource virtualization improves the throughput in both technologies. Furthermore, the delay performance is displayed for both 5G NR-U and Wi-Fi to show any impact of time-sharing coexistence.  相似文献   

5.
为了应对移动数据日益增长的需求,3GPP(3rd Generation Partnership Project)对LTE(Long Term Evolution)扩展到非授权频段展开了相关讨论。LAA(Licensed-Assisted Access),亦称为LTE-U(Unlicensed LTE),与目前已经运行在5GHz非授权频段上的其他无线接入技术(如Wi-Fi)的共存问题,成为了研究的焦点。本文主要研究了在非授权频段上运行LTE和Wi-Fi系统共存的机制,设计实现了基于LAA和Wi-Fi共存场景的系统级仿真平台。仿真结果表明,在非授权频段上LAA能与Wi-Fi和谐共存。针对LAA系统设计一种合理的退避机制,能够同时提升LAA和Wi-Fi系统的吞吐量,提高资源分配的公平性和使用效率。  相似文献   

6.
LTE授权辅助接入(LAA)和WiFi网络的共存性能已经被广泛研究。然而,这些工作忽略了捕获效应,即当两个以上的信号在相同信道上同时传输时,最强的信号仍然可能成功接收。这种现象在共存场景中可能比在WiFi网络中更频繁地发生。基于此,该文深入研究了LAA和WiFi网络在捕获效应下的共存性能。具体地,在共存场景中首先提出了两个以上信号的捕获模型,并推导出了捕获概率;然后,将LAA接入方案建模为具有捕获效应的新的2维离散马尔可夫模型,其中退避计数器的减少不仅取决于空闲的时隙,还取决于捕获效应发生的时隙;最后推导出共存性能的表达式。大量的仿真和数值结果验证了所提出的马尔可夫链和捕获模型的有效性。而且,仿真结果也证明了考虑捕获效应的必要性。  相似文献   

7.
基于Licensed Assisted Access技术的退避算法设计与优化   总被引:1,自引:1,他引:0  
随着无线宽带网络的发展,移动数据业务疯狂增长,频谱资源紧缺,为了扩充LTE容量,提高频谱利用率,LAA(Licensed Assisted Access)技术,即在非授权频段部署LTE网络,与其他无线接入技术(如Wi-Fi技术)融合共存的问题,逐渐成为研究焦点。因此,竞争机制中退避算法的设计成为关键。本文主要针对Wi-Fi与LAA共存的场景,基于LBT(Listen Before Talk)竞争机制,设计了三种退避算法,并在ns-3仿真平台上实现仿真,对比纯Wi-Fi环境下的性能表现,对退避算法进行合理的优化。  相似文献   

8.
As smart grid (SG) home area networks (HANs) communicate with various smart devices such as meters, sensors, and actuators on a 2.4‐GHz unlicensed band, the coexistence of different wireless technologies in such networks is a common phenomenon due to the overlapping of channels. In this research, homogeneous and heterogeneous interference are considered to address the coexistence problem in smart utility networks (SUNs). The homogeneous interference is mitigated by utilizing the contention free period (CFP) and the contention access period (CAP) of the MAC layer superframe of IEEE 802.15.4g designed for SUNs. This frame is used to get access for the channel. For this, a slotted CSMA/CA algorithm is used for various priority levels of data with adjustable backoff period (BP) and clear channel assessment (CCA) period in order that nodes (devices) with high priority can achieve high probability of channel access. By modeling the proposed scheme using the Markov chain, the exactness of the proposed scheme is assessed based on throughput, channel access delay, energy consumption per bit, and probability of successful data transmission and collision. A performance evaluation of the proposed scheme is further investigated by comparing it with the existing scheme PA‐MAC. In addition, a channel switching mechanism is explored to mitigate the heterogeneous interference with the help of a Naive Bayes classifier prediction. Finally, the prediction indicates that by choosing the non‐coexisting and the non‐overlapping channel, the proposed channel switching mechanism effectively mitigates the heterogeneous interference.  相似文献   

9.
With the growing use of the machine-to-machine (M2M) communication and the unlicensed band by advanced long term evolution (LTE-A) networks, known as LTE unlicensed (LTE-U), demand for resource access strategy is rapidly increasing and has recently been attracting considerable attention of mobile operators. The requirement set by 3rd generation partnership project in the release 11 about LTE standards will allow LTE-U and other unlicensed band access technology to peacefully coexist and operate in the same unlicensed band. LTE-U supports not only the human-to-human (H2H) communication but also the M2M communication. In this paper, a new MAC protocol for LTE-U that allow friendly co-existence of H2H with M2M communications working in unlicensed bands is presented. The proposed MAC mechanisms is designed to ensure an efficient and fair channel access as well as enabling better H2H/M2M coexistence. The throughput performance of both H2H and M2M systems is evaluated analytically and by simulation. The impact of H2H/M2M transmissions periods and spectrum sensing time on the throughput performance of H2H and M2M systems are also studied.  相似文献   

10.
The technological growth combined with the exponential increase of wireless traffic are pushing the wireless community to investigate solutions to maximally exploit the available spectrum. Among the proposed solutions, the operation of Long Term Evolution (LTE) in the unlicensed spectrum (LTE-U) has attracted significant attention. Recently, the 3rd Generation Partnership Project announced specifications that allow LTE to transmit in the unlicensed spectrum using a Listen Before Talk (LBT) procedure, respecting this way the regulator requirements worldwide. However, the proposed standards may cause coexistence issues between LTE and legacy Wi-Fi networks. In this article, it is discussed that a fair coexistence mechanism is needed to guarantee equal channel access opportunities for the co-located networks in a technology-agnostic way, taking into account potential traffic requirements. In order to enable harmonious coexistence and fair spectrum sharing among LTE-U and Wi-Fi, an adaptive LTE-U LBT scheme is presented. This scheme uses a variable LTE transmission opportunity (TXOP) followed by a variable muting period. This way, co-located Wi-Fi networks can exploit the muting period to gain access to the wireless medium. The scheme is studied and evaluated in different compelling scenarios using a simulation platform. The results show that by configuring the LTE-U with the appropriate TXOP and muting period values, the proposed scheme can significantly improve the coexistence among LTE-U and Wi-Fi in a fair manner. Finally, a preliminary algorithm is proposed on how the optimal configuration parameters can be selected towards harmonious and fair coexistence.  相似文献   

11.
Interference is disruptive to the operation of wireless sensor networks (WSNs) in unlicensed bands as wireless systems proliferate on the spectrum. The design of a spectrum sharing scheme for WSNs to enable coexistence with geographically collocated heterogeneous wireless systems having multiple parallel interfering channels is a persistent challenge. In this context, interference identification and channel ranking in terms of spectrum access opportunities are addressed in this paper. The goal is to develop a low complexity channel ranking algorithm from channel energy measurements at sensors when a packet-reception-ratio to signal-to-interference-and-noise-ratio (PRR-SINR) interference model is unavailable at network initialization phase. The interference characterizing estimators, temporal occupancy and strength level of a channel, are proposed for interference identification. The effectiveness of the estimators is tested on a sensor platform at 2.4 GHz ISM band under interference from WLAN. Subsequently, the impact of the interference estimators on a channel quality from a receiver perspective is determined with a decision theoretic approach. The estimators are weighted according to their influence on the fitness of a channel and channel ranking is established. The proposed channel ranking achieves a significant gain over heuristic channel ranking (HCR) and gives an accurate interference profile of the channels.  相似文献   

12.
To increase possible data transmission rate and to provide non-primary user’s desired throughput in short-range communications, in this paper we propose new cognitive radio (CR) network architecture with the coexistence with the legacy IEEE 802.11 WLAN. The legacy WLAN ISM band channel is mostly used for common control channel for cognitive operation on the licensed bands to manage CR devices when they join the network and to announce the utilization of the licensed band or primary system appearance on the current used channels. The proposed CR-WLAN MAC protocol is designed to accommodate new CR related features in the proposed network architecture and it has backward compatibility to the legacy WLAN system: (1) Network entry procedure is modified to inform CR users the current licensed band status and to manage CR user group separately by AP; (2) During the operation, two types of CR beacon multicasting mechanisms are proposed, CR beacons help CR users to decide its service change or spectrum handover and to immediately evacuate from the current used channel when primary signal is detected, (3) When the CR user need to change the serving CR AP, not only the beacon frame body of neighbor APs but also the licensed and unlicensed band status is delivered to CR node to search the target CR-WLAN AP fast and (4) A new type of hidden node problem is introduced that focuses on possible signal collisions between incumbent devices and cognitive radio CR-WLAN devices, and a simple and efficient sensing information exchange mechanism between neighbor APs is proposed. The simulation results show that the proposed CR system can provide reliable protection to primary systems, as well as efficient utilization of given licensed spectrum resources, in which the network throughput can be greatly enhanced.  相似文献   

13.
This paper presents an integrated scheme for the dynamic‐frequency‐hopping (DFH) technique provided in literature for the IEEE 802.22 standard supporting wireless regional area networks (WRANs). The performance of DFH is analyzed thoroughly for various channel models and for a multiple‐input multiple‐output systems. The core of this research is based on the coexistence of digital terrestrial TV broadcasting and the WRANs in the TV white space. The proposed technique aims at protecting the incumbent users from interfering with the cognitive broadband access in the TV spectrum. In order to achieve this, spectrum sensing is performed in the intended working channel in DFH while spectrum monitoring with an energy‐ratio (ER) algorithm is applied during the WRAN data transmission in the working channel. Hence, in the DFH‐ER algorithm, the reappearance of a digital terrestrial TV signal in a band occupied by the WRANs would be detected immediately. This will provide interference free performance for the licensed signal as well as reliable data transmission for the unlicensed ones. Both analyses and simulation results of the proposed DFH‐ER technique compared with the conventional DFH scenario exemplify the enhancement of the WRAN data transmission while protecting the digital terrestrial TV users. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Spectrum Leasing to Cooperating Secondary Ad Hoc Networks   总被引:2,自引:0,他引:2  
The concept of cognitive radio (or secondary spectrum access) is currently under investigation as a promising paradigm to achieve efficient use of the frequency resource by allowing the coexistence of licensed (primary) and unlicensed (secondary) users in the same bandwidth. According to the property-rights model of cognitive radio, the primary terminals own a given bandwidth and may decide to lease it for a fraction of time to secondary nodes in exchange for appropriate remuneration. In this paper, we propose and analyze an implementation of this framework, whereby a primary link has the possibility to lease the owned spectrum to an ad hoc network of secondary nodes in exchange for cooperation in the form of distributed space-time coding. On one hand, the primary link attempts to maximize its quality of service in terms of either rate or probability of outage, accounting for the possible contribution from cooperation. On the other hand, nodes in the secondary ad hoc network compete among themselves for transmission within the leased time-slot following a distributed power control mechanism. The investigated model is conveniently cast in the framework of Stackelberg games. We consider both a baseline scenario with full channel state information and information-theoretic transmission strategies, and a more practical model with long-term channel state information and randomized distributed space-time coding. Analysis and numerical results show that spectrum leasing based on trading secondary spectrum access for cooperation is a promising framework for cognitive radio.  相似文献   

15.

Utilization of unlicensed spectrum under licensed assisted access ensuring fair co-existence with Wi-Fi networks is a good solution to address immense usage of mobile data. Radio communication operation of LTE in unlicensed frequency band is referred as LTE-unlicensed (LTE-U) or LTE-licensed assisted access. In this paper, we consider a HGNW in which coverage area of Wireless-Fidelity (Wi-Fi)’s Access Point is integrated within the LTE-U small base station’s cellular network coverage area. To overcome the disadvantages of existing LTE-U technics like carrier sense adaptive transmission and listen before talk, we proposed a new methodology i.e., sense before transmit in this paper by adopting a transmit power control mechanisms using reciprocity theorem based on the channel state information to assign the secondary carriers in the uplink as well as in the downlink directions in the unlicensed spectrum to carry the traffic. In our proposal, LTE-U users are allowed to use the unlicensed spectrum provided that the interference produced at Wi-Fi users due to LTE-U activities is remained below a certain threshold. We evaluated the performance of proposed network model in terms of outage probability and achievable throughputs.

  相似文献   

16.
In recent years, Industrial Internet of Things (IIoT) has attracted growing attention from both academia and industry. Meanwhile, when traditional wireless sensor networks are applied to complex industrial field with high requirements for real time and robustness, how to design an efficient and practical cross-layer transmission mechanism needs to be fully investigated. In this paper, we propose a Q-learning-based dynamic spectrum access method for IIoT by introducing cognitive self-learning technical solution to solve the difficulty of distributed and ordered self-accessing for unlicensed terminals. We first devise a simplified MAC access protocol for unlicensed users to use single available channel. Then, a Q-learning-based multi-channels access scheme is raised for the unlicensed users migrating to other lower cells. The channel with most Q value will be considered to be selected. Every mobile terminals store and update their own channel lists due to distributed network mode and non-perfect sensing ability. Numerical results are provided to evaluate the performances of our proposed method on dynamic spectrum access in IIoT. Our proposed method outperforms the traditional simplified accessing methods without self-learning capability on channel usage rate and conflict probability.  相似文献   

17.
Over the last years, a number of mechanisms have been proposed for scheduling different types of traffic over base stations-oriented wireless and mobile systems. The majority of these mechanisms focus on access control in the base station-to-mobile units segment of the wireless and mobile system. Recent proposals for the unlicensed spectrum in the 5 GHz band have redefined the problem, since base stations, operated by different operators in overlapping geographical areas, need access resolution mechanisms to allocate wireless resources. This issue is addressed here, and a novel mechanism for dynamic channel allocation in unlicensed wireless LANs (wLANs) or public area wireless networks (PAWNs) environments is presented. The proposed method exploits the learning automata technique for the efficient allocation of wireless resources in a distributed manner. Nearby base stations that compete to access and reserve time on separate frequencies are driven by the output of a learning automaton, which determines the available carrier that demonstrates minimal competition. The paper discusses contention resolution disciplines while the learning automaton algorithm as well as its knowledge base structure are also discussed and evaluated.  相似文献   

18.
Journal of Communications Technology and Electronics - New Radio-Unlicensed (NR-U) is a technology that allows fifth generation mobile networks to utilize unlicensed frequency bands, in particular,...  相似文献   

19.
设备对设备(D2D)通信作为一种短距离通信技术,能够极大地减轻蜂窝基站的负载压力和提高频谱利用率。然而将D2D直接部署在授权频段或者免授权频段必然导致与现有用户的严重干扰。当前联合部署在授权和免授权频段的D2D通信的资源分配通常被建模为混合整数非线性约束的组合优化问题,传统优化方法难以解决。针对这个挑战性问题,该文提出一种基于多智能体深度强化学习的D2D通信资源联合分配方法。在该算法中,将蜂窝网络中的每个D2D发射端作为智能体,智能体能够通过深度强化学习方法智能地选择接入免授权信道或者最优的授权信道并发射功率。通过选择使用免授权信道的D2D对(基于“先听后说”机制)向蜂窝基站的信息反馈,蜂窝基站能够在非协作的情况下获得WiFi网络吞吐量信息,使得算法能够在异构环境中执行并能够确保WiFi用户的QoS。与多智能体深度Q网络(MADQN)、多智能体Q学习(MAQL)和随机算法相比,所提算法在保证WiFi用户和蜂窝用户的QoS的情况下能够获得最大的吞吐量。  相似文献   

20.
The coexistence of femtocell and WiFi networks in a heterogeneous spectrum environment with licensed and unlicensed bands will support multi-mode femtocell users (FUs) to simultaneously transmit on both licensed and unlicensed bands. The efficient integration of both femtocell and WiFi technologies is seen as crucial for supporting the offloading of femtocell traffic to WiFi networks. To successfully deploy these integrated technologies, the overall licensed and unlicensed spectrum usage must be efficiently managed. Thus, we propose a new cognitive-based connection-level admission control with access retrial for a femtocell network that operates under a mixed spectrum of unlicensed and licensed bands. By deploying cognitive radio concepts, the FUs will utilize the unused spectrum of the existing unlicensed spectrum of the WiFi network in an opportunistic manner in addition to using the licensed spectrum. By using the retrial phenomenon policy, the blocked FUs can retry the access, which can reduce their loss probability. An analytical model using a three-dimensional continuous time Markov chain with a level-dependent quasi birth-and-death structure was developed to evaluate and study the performance of the proposed scheme. The matrix analytic method was used to obtain the steady state probability and performance measures. The result shows that the performance of FUs for integrated femtocell-WiFi networks using the proposed scheme significantly improved in terms of FUs throughput and loss probability. The results also show that the retrial phenomenon of FUs enhances their performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号