首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
基于TSMC 0.18 μm CMOS工艺,提出了一种适用于无源UHF RFID标签芯片的CMOS整流器。与传统二极管连接方式的MOS管相比,使用了一种不同的二极管连接方式的MOS管,减小了阈值电压和漏电流。利用新结构实现了一个5级电荷泵整流电路。测试结果表明,当输入0 dBm信号时,整流器的转换效率为29.24%。整体芯片的面积是(0.7 × 0.6) mm2。  相似文献   

2.
基于TSMC 180 nm工艺,设计了一款高效率低阈值整流电路。在传统差分输入交叉耦合整流电路的基础上,提出源极与衬底之间增加双PMOS对称辅助晶体管配合缓冲电容的改进结构,对整流晶体管进行阈值补偿。有效缓解了MOS管的衬底偏置效应,降低了整流电路的开启阈值电压,针对较低输入信号功率,提高了整流电路的功率转换效率(PCE)。同时将低阈值整流电路三级级联以提高输出电压。测试结果显示,在输入信号功率为-14 dBm@915 MHz时,三级级联低阈值整流电路实现了升压功能,能稳定输出1.2 V电压,峰值PCE约为71.32%。相较于传统结构,该低阈值整流电路更适合用于射频能量收集。  相似文献   

3.
周盛华  吴南健 《半导体学报》2007,28(9):1471-1476
提出了一个适用于无源UHF RFID标签芯片的全CMOS整流器.整流器包括射频-直流转换电路、偏置电路、直流-直流转换电路和振荡器电路.整流器的工作频率范围是860~960 MHz.基于0.18μm,1p6m的标准数字CMOS工艺,设计并实现了无源UHF RFID标签芯片的整流器.该设计采用开关电容电路技术动态地消除了CMOS管开启电压的问题,在标准数字CMOS工艺下实现了高效率的超高频整流器.整流器的面积为180μm×140μm.当输入900MHz,-16dBm的射频信号时,整流器的输出电压为1.2V,启动时间为980μs.  相似文献   

4.
CMOS超高频整流器   总被引:1,自引:0,他引:1  
提出了一个适用于无源UHF RFID标签芯片的全CMOS整流器.整流器包括射频-直流转换电路、偏置电路、直流-直流转换电路和振荡器电路.整流器的工作频率范围是860~960 MHz.基于0.18μm,1p6m的标准数字CMOS工艺,设计并实现了无源UHF RFID标签芯片的整流器.该设计采用开关电容电路技术动态地消除了CMOS管开启电压的问题,在标准数字CMOS工艺下实现了高效率的超高频整流器.整流器的面积为180μm×140μm.当输入900MHz,-16dBm的射频信号时,整流器的输出电压为1.2V,启动时间为980μs.  相似文献   

5.
张聪杰  冯全源  向乾尹 《微电子学》2018,48(1):103-107, 114
对UHF RFID阈值补偿型整流电路中的电流和电压变化情况进行分析。通过采用将电流波形近似为三角形的方法,提出了阈值补偿型整流电路的模型。基于SMIC 0.18 μm工艺,设计了一种适用于UHF RFID标签的整流电路,用于对模型进行验证。结果表明,该模型能够较好地预测输出电压与功率转换效率(PCE),当输入电压在0.4~0.7 V变化时,输出电压的最大误差为2.6%,PCE的最大误差为2.2%。  相似文献   

6.
为了提高射频标签(RFID)中基于肖特基二极管微波整流电路的效率,采用微带结构实现了一种915 MHz紧凑型的整流电路。该微波整流电路具有质量轻、尺寸小、整流输入功率动态范围大等特点,设计的仿真和实验结果显示:输入微波功率在13 dBm~22 dBm的情况下,均获得了高于60%的整流效率。通过完善改进电路,可以进一步提高整流的效率,并应用于微波无线能量传输或大型RFID的微波整流天线。  相似文献   

7.
章少杰 《电子器件》2009,32(6):1035-1039
本文从设计符合EPCTM C1G2协议的超高频无源射频识别标签芯片的角度出发,对RFID标签芯片模拟前端电路进行设计.通过对各个关键电路的功耗与电源进行优化,实现了一个符合协议要求的低电压、低功耗的超高频无源RFID标签芯片的模拟前端.该UHF RFID标签模拟前端设计采用SMIC 0.18 μm EEPROM CMOS工艺库.仿真结果表明,标签芯片模拟前端的整体功耗控制在2.5 μW以下,工作电源可低至1 V,更好地满足了超高频无源射频识别标签芯片应用需求.  相似文献   

8.
设计完成了一款无源超高频RFID标签的低功耗模拟前端电路。采用了一种新的阈值消除技术,整流电路的能量转换效率可以达到30%以上;使用一种低功耗的稳压电路,为数字电路提供稳定的1 V电源电压的同时功耗为500 nA。此外提出了一种等效灵敏度的测试方法,可以简便地获得标签芯片的激活功率水平。该设计采用TSMC 0.18μm工艺,整个芯片面积为700μm×800μm。测试结果显示:稳压电路可以输出稳定的0.95 V电压,解调模块可以正确调解幅度大于150 mV的天线信号。根据等效灵敏度测试方法,测得本设计的灵敏度约为-14.9 dBm。  相似文献   

9.
超高频RFID无源标签倍压整流电路设计   总被引:1,自引:1,他引:0       下载免费PDF全文
刘锋  龙云亮 《微波学报》2008,24(2):37-41
从法拉第定律和安培定律出发,基于波动原理的分布理论分析了射频波段倍压整流电路的特性,详细讨论了其在无线射频识别技术(RFID)设计中的应用.结果表明,超高频UHF(Ultra Hish Frequency)频段的倍压整流电路与经典的倍压整流电路分析有很大的不同.通过多次实验校正,最后在实践中成功设计出一种效果良好、可以实用的UHF频段RFID无源标签芯片的倍压整流电路.  相似文献   

10.
本文设计了一种应用于无源超高频射频识别标签的电流模稳压电路。无源标签的能量必须通过整流电路从射频能量中获取。由于输入射频功率的巨大变化,整流电路的输出需经过稳压后才能为标签提供稳定的电源。通过嵌入亚阈值参考源对流向负载的电流进行精确控制,稳压电路的输出在-20-80℃温度范围内稳定在1-1.3V,并实现了约100kHz的带宽,保证了电源的快速恢复。电路在UMC 0.18um混合CMOS工艺下流片实现,电流功耗为1uA。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号