首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孙博 《江西煤炭科技》2021,(1):166-167,170
采用分源预测法计算得到镇城底煤矿22208工作面回采时本煤层相对瓦斯涌出量为3.06 m^3/t,绝对瓦斯涌出量为6.38 m^3/min,邻近层绝对瓦斯涌出量为2.53 m^3/min。采用“本煤层顺层钻孔抽采+裂隙带高位钻孔抽采+采空区回风隅角插管抽采”技术方案进行工作面瓦斯治理。现场瓦斯监测表明,工作面回采期间,回风瓦斯浓度保持在0.4%~0.6%之间,保证工作面安全生产。  相似文献   

2.
赵文曙  赵泽辉 《煤》2021,(2):75-77
西铭矿为防止近距离煤层开采时瓦斯超限,确保48710工作面安全高效生产,从顶底板应力环境和瓦斯来源空间分布两个方面对近距离煤层开采时瓦斯来源进行分析。基于北七采区其他工作面回采期间瓦斯涌出量情况,预计48710工作面回采期间绝对瓦斯涌出量为18.18 m 3/min,并制定了本煤层顺层钻孔抽采和底抽钻孔穿层抽采的瓦斯治理措施,现场瓦斯抽采结果表明:本煤层顺层钻孔和底抽钻孔平均瓦斯抽采浓度分别为10.58%和43.12%,平均瓦斯抽采纯量分别为1.16 m 3/min和8.84 m 3/min,工作面瓦斯抽采率达55%,为工作面安全高效生产提供了保障。  相似文献   

3.
李海滨 《煤》2023,(4):68-70
针对矿井开采的2号煤层瓦斯涌出量较大的问题,在分析瓦斯来源的基础上,提出综合使用本煤层钻孔、裂隙瓦斯钻孔、顶板瓦斯抽采钻孔以及大孔径钻孔等对本煤层瓦斯、临近层瓦斯以及采空区瓦斯涌出进行治理。依据回采工作面煤层赋存情况以及采面开采情况,对各类瓦斯抽采钻孔布置方案进行设计。现场应用后,采面各类型瓦斯抽采钻孔瓦斯抽采量可达到8.6 m3/min,回风巷、回风上隅角等位置瓦斯浓度均在安全范围内,可为采面煤炭安全、高效回采创造良好条件。  相似文献   

4.
胡英  王关亮  鹿小虎 《煤炭技术》2020,39(4):136-139
针对厚煤层综放工作面瓦斯治理难度大、抽采效果差、工作面难以消突的问题,开展了综放工作面立体瓦斯抽采技术研究。立体瓦斯抽采技术包括保护层开采、工作面回采区域顺层钻孔预抽、回风巷留管抽采瓦斯、利用尾巷抽采瓦斯、顶板高位钻孔及底板拦截钻孔抽采瓦斯。通过对P41104综放工作面研究表明:7~#煤层距11~#煤层42 m,作为11~#煤层的上保护层开采是有效的,消除了11~#煤层的突出危险性。立体瓦斯抽采技术的实施,使工作面瓦斯抽采纯量达到25.86 m3/min,抽采率达73%,回风流瓦斯浓度稳定在0.7%以下,减少了瓦斯涌出量,有效解决了工作面上隅角与回风流瓦斯超限问题。  相似文献   

5.
上保护层开采卸压瓦斯治理技术研究   总被引:5,自引:0,他引:5  
以青东煤矿首采726工作面作为上保护层,探讨了上保护层瓦斯来源:本煤层瓦斯、回采阶段下邻近层8号煤层涌出的瓦斯.分源预测法计算表明,8号煤层涌出的瓦斯为726工作面的主要瓦斯涌出源,由于保护层开采结合卸压瓦斯抽采是煤矿瓦斯治理的主要技术手段,提出了本煤层回采期间顶板巷条带网格穿层钻孔抽采、顶板巷分段封闭抽采、回风巷下向穿层钻孔抽采、顺层钻孔抽采、采空区埋管抽采等瓦斯治理方案.采取上述瓦斯综合治理措施后,平均瓦斯抽采流量15.96 m3/min,工作面瓦斯抽采量达到729.44万m3,瓦斯抽采率达到75%以上,杜绝了工作面上隅角瓦斯超限.  相似文献   

6.
以朱集煤矿1111(1)工作面为例,针对深井高瓦斯低透气性煤层群首采层开采卸压瓦斯治理难题,将Y型通风工作面采空区瓦斯运移规律与采空区内部空隙储存卸压瓦斯的优势相结合,提出并实施了强化留巷墙体封闭和Y型通风工作面留巷段采空区卸压瓦斯抽采技术,结合地面钻井抽采采动上部卸压煤层瓦斯,实现了深井煤层群首采层工作面的安全高效回采。1111(1)工作面回采期间,绝对瓦斯涌出量最大72.39 m3/min,平均为43.64 m3/min,在工作面风量2290~2700 m3/min条件下,回风流瓦斯体积分数0.6%以下,平均瓦斯抽采量34.27 m3/min,其中埋管抽采瓦斯纯量平均为21.94 m3/min,占瓦斯抽采总量的64%,工作面回采期间瓦斯平均抽采率为78%,研究成果为今后类似深井煤层群首采层开采的卸压瓦斯抽采和治理提供技术指导。  相似文献   

7.
贾雪刚  贾雪强 《中州煤炭》2022,(11):300-305
以某回采工作面为例详细介绍了高瓦斯煤层的治理技术方案。对矿井和工作面的基本情况进行了介绍,计算获得工作面的绝对瓦斯涌出量和相对瓦斯涌出量分别为25.58 m3/min和9.21 m3/t。结合矿井实际情况,同时利用高位钻场钻孔瓦斯抽采技术、顶板岩层定向长钻孔瓦斯抽采技术和地面钻孔瓦斯抽采技术对工作面的瓦斯进行治理,对不同技术方案的钻孔参数进行了详细介绍。上述3种瓦斯抽采方案在整个回采期间抽采获得的瓦斯总量分别为130.01万m3、56.36万m3和227.9万m3。对容易聚集瓦斯的上隅角和回风巷部位的瓦斯浓度进行持续监测,发现2个部位的瓦斯浓度平均值分别为0.21%和0.19%,远低于安全基本要求,说明所述工作面瓦斯治理技术效果良好。  相似文献   

8.
针对白芨沟煤矿2621-1工作面煤层赋存条件复杂、原始瓦斯含量高、瓦斯涌出量大、瓦斯灾害严重等问题,在回采前采用顺层走向长钻孔、底板穿层钻孔和本煤层顺层钻孔等相结合的"立体"预抽瓦斯方法,降低煤层原始瓦斯含量;在回采期间采用高位钻孔、联络巷、上隅角插管和大孔径穿层钻孔抽采上覆采空区瓦斯相结合的综合治理措施。上述措施实施后,工作面煤层瓦斯含量大幅下降,工作面回采时绝对瓦斯涌出量最大为79.76 m3/min,回采期间工作面回风瓦斯体积分数最大为0.51%,上隅角瓦斯体积分数最大为0.68%,保证了工作面的安全回采。  相似文献   

9.
回采工作面初采期瓦斯涌出不均衡,易出现瓦斯超限现象。针对新源煤矿近距离煤层群开采、瓦斯涌出量大等特点,提出了小角度高位钻孔抽采治理初采期瓦斯的方法;2219工作面应用实践表明,初采期内,小角度高位钻孔抽采瓦斯纯量最高5.25m3/min,瓦斯抽采率64.02%,回风流瓦斯浓度最高为0.32%,上隅角最高瓦斯浓度0.96%,未出现瓦斯超限现象,取得了很好的初采期瓦斯治理效果。  相似文献   

10.
为了保证高瓦斯矿井回采工作面正常回采,通过对开采层和邻近层瓦斯赋存情况的分析,预测回采工作面的瓦斯涌出量最大为34 m~3/min,根据本煤层原始瓦斯含量和预抽时间的不同,本煤层钻孔间距设计为2~6 m,同时根据回采时瓦斯涌出量的不同,穿层钻孔设计个数为6~16个。经过瓦斯治理后回采工作面平均日产原煤4 500 t时,绝对瓦斯涌出量32m~3/min,回风流瓦斯浓度0.4%左右,风排瓦斯量6.5 m3/min,抽采瓦斯量25.5 m~3/min,抽采率为79%。  相似文献   

11.
针对新村煤矿开采的3号煤层综采工作面采空区内瓦斯集中涌出量大、上隅角瓦斯高、治理难度大等问题,对3号煤层瓦斯分布规律及抽采可行性进行研究分析,提出大直径钻孔瓦斯抽采技术治理工作面上隅角采空区瓦斯,并制定大直径抽采钻孔施工方案。现场应用效果表明:大直径钻孔抽采瓦斯浓度达到2%以上,工作面回采期间上隅角瓦斯浓度控制在0.15%~0.65%,回风瓦斯控制在0.1%~0.75%,回采期间未发生过瓦斯超限事故。  相似文献   

12.
为了解决高瓦斯突出煤层开采中的瓦斯问题,以阜生矿1102工作面为例,通过分析煤层瓦斯赋存特点和1102工作面瓦斯涌出特征,得出正常回采期间1102工作面相对瓦斯涌出量为7.59 m3/t,绝对瓦斯涌出量为18.45 m3/min.针对瓦斯涌出状况,设计采用了顺层钻孔抽采、高抽巷抽采、采空区预埋管抽采、回风巷钻场穿层钻孔和封闭采空区抽采相结合的综合抽采方法。对抽采措施进行效果检验,结果表明,综合措施的采用使回采工作面瓦斯得到了有效控制,解决了高瓦斯突出煤层开采的瓦斯治理问题。  相似文献   

13.
针对晋华宫煤矿8101综采工作面在回采过程中煤层极具变化、瓦斯赋存不稳定的情况,提出以本煤层钻孔抽放、高位裂隙钻孔抽放、低位钻孔抽放相结合的瓦斯综合治理技术,钻孔区域预抽后,工作面平均风排瓦斯量为5.24m3/min,平均抽采瓦斯总量为8.64m3/min,回风巷的瓦斯浓度控制在0.08%~0.32%之间,平均瓦斯浓度为0.19%,工作面游离瓦斯得到了有效的控制。  相似文献   

14.
针对丁集矿1412(1)高瓦斯工作面,建立了11-2煤层瓦斯梯度关系式,预测1412(1)工作面煤层瓦斯含量5.98 m3/t,11-2煤层瓦斯总含量937.439×104m3,相对瓦斯涌出量9.42 m3/t;工作面瓦斯治理采取地面井、顺层钻孔、采空区埋管、高抽巷抽采卸压瓦斯、高抽巷及底抽巷穿层钻孔抽采瓦斯综合防治措施,工作面瓦斯浓度平均0.53%,瓦斯抽采率平均达80%,实现了高瓦斯易自燃孤岛工作面安全快速回采。  相似文献   

15.
利用顺层钻孔抽放技术对邹庄矿3204高瓦斯工作面进行瓦斯预抽,通过ANSYS软件模拟不同钻孔间距下煤层瓦斯压力的分布情况,结果表明:钻孔间距为3m时,瓦斯抽放效果最为理想。通过瓦斯预抽,3204工作面顺层钻孔抽采瓦斯平均浓度为63.5%;回采巷道实测平均煤层瓦斯含量为4.63m3/t,煤层残余瓦斯压力平均为0.2MPa,瓦斯治理取得良好效果。  相似文献   

16.
新义矿采煤工作面区域瓦斯抽采效果研究   总被引:1,自引:0,他引:1  
为了消除采煤工作面煤与瓦斯突出危险性,保证工作面接替工作的顺利进行,根据新义矿11031采煤工作面煤层赋存与瓦斯的具体情况,选择采用(本)煤层顺层平行钻孔预抽回采区域煤层瓦斯的区域防突措施。预抽工作面煤层瓦斯后结果表明:预抽钻孔布置均匀无空白带,整个回采区域划分为4个评价单元;累计抽采瓦斯量112.4万m3,抽采率达33.8%,根据瓦斯抽采量计算残余瓦斯含量为5.45~7.16 m3/t;实测残余瓦斯含量3.89~6.77 m3/t,可解吸瓦斯含量为2.69~5.57 m3/t。各项评价指标均满足《煤矿瓦斯抽采达标暂行规定》的要求,可以判定11031采煤工作面区域瓦斯抽采效果达标。  相似文献   

17.
综放工作面瓦斯综合抽采治理技术   总被引:5,自引:0,他引:5  
针对保德煤矿随着开采深度不断加大,煤层瓦斯含量逐步增加的问题,建立了深部煤层瓦斯综合抽采治理模式。回采工作面采用本煤层顺层钻孔和千米钻孔相结合的瓦斯抽采方法,掘进工作面采用母巷羽翼超前预抽方法,采空区采用在联络巷埋管抽采瓦斯的方法。结果表明:采用上述瓦斯综合抽采治理技术后,采煤工作面瓦斯抽采浓度和预抽率均在10%以上,残余瓦斯含量控制在4.5m3/t以下;掘进工作面残余瓦斯含量降低至4.5 m3/t以下,残余瓦斯压力均降低至0.2 MPa以下,且掘进期间工作面和回风流中最高瓦斯浓度均在0.3%以下;采用联络巷埋管抽取采空区瓦斯后,工作面上隅角瓦斯浓度由之前平均0.6%降低到0.3%以下,最大抽采瓦斯纯量13.60 m3/min,最高瓦斯浓度40%。通过瓦斯综合抽采技术,有效降低了工作面瓦斯浓度,有效保障了工作面安全高效回采。  相似文献   

18.
蔡敏博  李帅 《煤炭科技》2023,(4):162-166
为了解决近距离煤层群上保护层回采过程中大量卸压瓦斯涌入导致工作面瓦斯超限问题,以及被保护层回采工作面瓦斯治理难题,以下峪口煤矿4216工作面为研究对象,通过对工作面瓦斯涌出来源进行预测分析,确定以穿层钻孔抽采卸压瓦斯、采空区埋管抽采瓦斯、顺层钻孔预抽、边抽边采等为主的综合瓦斯治理技术。试验结果表明,4216工作面回采期间未发生瓦斯超限问题,上保护层回采距工作面15~35 m内,卸压瓦斯抽采进入活跃期,钻孔施工位置应当超前工作面推进方向35 m。该综合瓦斯治理技术有效可行,研究成果对韩城矿区突出矿井瓦斯防治具有指导意义。  相似文献   

19.
为解决22301工作面瓦斯含量高的问题,基于22301工作面顶底板岩层特征,分析得出工作面回采期间瓦斯的主要来源为本煤层与上下邻近层,据此采用本煤层+上下邻近层+采空区大直径钻孔抽采相结合的瓦斯综合治理措施,并进行各项抽采措施参数的设计,回采期间通过测试回风流及上隅角的瓦斯含量验证抽采效果。结果表明:瓦斯治理技术实施后,工作面上隅角和回风流中瓦斯浓度的最大值分别为0.55%和0.51%,无瓦斯超限现象,为工作面的安全回采提供了保障。  相似文献   

20.
《煤矿安全》2017,(5):147-151
针对于白芨沟井近水平二3特厚煤层瓦斯含量高、涌出量大的特点,为解决开采过程中瓦斯超限问题,提出了底板穿层钻孔+定向长钻孔+工作面顺层钻孔等的井下立体抽采技术,并采用现场试验分析了瓦斯抽采规律。结果表明:抽采钻孔瓦斯浓度和流量随时间变化呈现先降低后稳定的规律、随工作面推进变化呈现先增加后逐渐减小的规律,0102102首分层工作面预抽后,可解吸瓦斯含量最大5.354 8 m3/t,残存瓦斯含量2.82 m3/t,采前瓦斯抽采达标;回采期间回风瓦斯浓度最大0.58%,上隅角瓦斯浓度最大0.66%,安全回采1 100 m,无瓦斯超限现象,回采瓦斯涌出得到了很好的治理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号